

The Road to learn React
Your journey to master plain yet pragmatic React

Robin Wieruch

This book is for sale at http://leanpub.com/the-road-to-learn-react

This version was published on 2018-07-20

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2018 Robin Wieruch

http://leanpub.com/the-road-to-learn-react
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Robin Wieruch by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I am going to learn #ReactJs with The Road to learn React by @rwieruch Join me on my journey �
https://roadtoreact.com

The suggested hashtag for this book is #ReactJs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#ReactJs

http://twitter.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20learn%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20%E2%9A%9B%EF%B8%8F%20https://roadtoreact.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20learn%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20%E2%9A%9B%EF%B8%8F%20https://roadtoreact.com
https://twitter.com/search?q=%23ReactJs
https://twitter.com/search?q=%23ReactJs

Contents

Foreword . i

About the Author . ii

Testimonials . iii

Education for Children . v

FAQ . vi

Change Log . viii

How to read it? . x

Introduction to React . 1
Hi, my name is React. 2
Requirements . 4
node and npm . 5
Installation . 7
Zero-Configuration Setup . 8
Introduction to JSX . 12
ES6 const and let . 15
ReactDOM . 17
Hot Module Replacement . 18
Complex JavaScript in JSX . 20
ES6 Arrow Functions . 24
ES6 Classes . 26

Basics in React . 29
Internal Component State . 30
ES6 Object Initializer . 33
Unidirectional Data Flow . 35
Bindings . 40
Event Handler . 45
Interactions with Forms and Events . 50
ES6 Destructuring . 58

CONTENTS

Controlled Components . 60
Split Up Components . 62
Composable Components . 65
Reusable Components . 67
Component Declarations . 70
Styling Components . 73

Getting Real with an API . 80
Lifecycle Methods . 81
Fetching Data . 84
ES6 Spread Operators . 88
Conditional Rendering . 91
Client- or Server-side Search . 94
Paginated Fetch . 99
Client Cache . 103
Error Handling . 110
Axios instead of Fetch . 114

Code Organization and Testing . 119
ES6 Modules: Import and Export . 120
Code Organization with ES6 Modules . 124
Snapshot Tests with Jest . 129
Unit Tests with Enzyme . 136
Component Interface with PropTypes . 138
Debugging with React Developer Tools . 142

Advanced React Components . 144
Ref a DOM Element . 145
Loading … . 149
Higher-Order Components . 153
Advanced Sorting . 157

State Management in React and beyond . 170
Lifting State . 171
Revisited: setState() . 178
Taming the State . 183

Final Steps to Production . 185
Eject . 186
Deploy your App . 187

Outline . 188

Foreword
The Road to learn React teaches you the fundamentals of React. You will build a real world
application along the way in plain React without complicated tooling. Everything from project setup
to deployment on a server will be explained for you. The book comes with additional referenced
reading material and exercises with each chapter. After reading the book, you will be able to build
your own applications in React. The material is kept up to date by me and the community.

In the Road to learn React, I want to offer a foundation before you start to dive into the broader React
ecosystem. It has less tooling and less external state management, but a lot of information about
React. It explains general concepts, patterns and best practices in a real world React application.

You will learn to build your own React application. It covers real world features like pagination,
client-side caching and interactions such as searching and sorting. Additionally, you will transition
from JavaScript ES5 to JavaScript ES6 along the way. I hope this book captures my enthusiasm for
React and JavaScript and helps you to get started with it.

About the Author
Robin Wieruch is a German software and web engineer who is dedicated to learn and teach
programming in JavaScript. After obtaining his master’s degree in computer science, he continued
learning every day on his own. He gained experience from the startup world where he used
JavaScript excessively during his professional time and spare time. It gave him the opportunity to
teach others about these topics.

For a few years, Robin worked closely with a great team of engineers at a company called Small
Improvements¹ developing large scale applications. The company offers a SaaS product that enables
the customers to give feedback to their companies. This application is developed using JavaScript in
the frontend and Java in the backend. In the frontend, the first iteration was written in Java with the
Wicket Framework and jQuery. When the first generation of SPAs became popular, the company
migrated to Angular 1.x for the frontend application. After using Angular for more than two years,
it became clear that Angular wasn’t the best solution to work with state intense applications back
in the days. That’s why the company made the final jump to React and Redux that has enabled it to
operate on a large scale successfully.

During his time in the company, Robin regularly wrote articles about web development on his
website. He received great feedback from people concerning his articles and that allowed him to
improve his writing and teaching style. Article after article, Robin grew in his ability to teach others.
His first article was packed with too much stuff which was quite overwhelming for students, but he
improved it over time by focussing and teaching only one subject.

Nowadays, Robin is a self-employed teacher. He finds it to be a fulfilling activity seeing students
thrive by giving them clear objectives and a short feedback loop. That’s one thing you would learn
at a feedback company, wouldn’t you? But without coding himself, he wouldn’t be able to teach
things. That’s why he invests his remaining time in programming. You can find more information
about Robin and ways to support and work with him on his website².

¹https://www.small-improvements.com/
²https://www.robinwieruch.de/about

https://www.small-improvements.com/
https://www.small-improvements.com/
https://www.robinwieruch.de/about
https://www.small-improvements.com/
https://www.robinwieruch.de/about

Testimonials
There are many testimonials³, ratings⁴ and reviews⁵ about the book which should confirm the quality
of it. I am so proud of it, because I never expected such an overwhelming feedback. If you enjoy the
book as well, I would love to find your rating/review somewhere as well. It helps me to spread the
word about the book. The following shows a short excerpt of these good voices:

Muhammad Kashif⁶: “The Road to Learn React is a unique book that I recommend to any student
or professional interested in learning react basics to advanced level. It is packed with insightful tips
and techniques that are hard to find elsewhere, and remarkably thorough in its use of examples and
references to sample problems, i have 17 years of experience in web and desktop app development,
and before reading this book i was having trouble in learning react, but this book works like magic.”

Andre Vargas⁷: “The Road to Learn React by Robin Wieruch is such an awesome book! Most of
what I learned about React and even ES6 was through it!”

Nicholas Hunt-Walker, Instructor of Python at a Seattle Coding School⁸: “This is one of the
most well-written & informative coding books I’ve ever worked through. A solid React & ES6
introduction.”

Austin Green⁹: “Thanks, really loved the book. Perfect blend to learn React, ES6, and higher level
programming concepts.”

Nicole Ferguson¹⁰: “I’m doing Robin’s Road to Learn React course this weekend & I almost feel
guilty for having so much fun.”

Karan¹¹: “Just finished your Road to React. Best book for a beginner in the world of React and JS.
Elegant exposure to ES. Kudos! :)”

Eric Priou¹²: “The Road to learn React by Robin Wieruch is a must read. Clean and concise for React
and JavaScript.”

A Rookie Developer: “I just finished the book as a rookie developer, thanks for working on this. It
was easy to follow and I feel confident in starting a new app from scratch in the coming days. The
book was much better than official React.js tutorial that I tried earlier (and couldn’t complete due
to lack of detail). The exercises at the end of each section were very rewarding.”

³https://roadtoreact.com/
⁴https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
⁵https://www.amazon.com/dp/B077HJFCQX
⁶https://twitter.com/appsdevpk/status/848625244956901376
⁷https://twitter.com/andrevar66/status/853789166987038720
⁸https://twitter.com/nhuntwalker/status/845730837823840256
⁹https://twitter.com/AustinGreen/status/845321540627521536

¹⁰https://twitter.com/nicoleffe/status/833488391148822528
¹¹https://twitter.com/kvss1992/status/889197346344493056
¹²https://twitter.com/erixtekila/status/840875459730657283

https://roadtoreact.com/
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.amazon.com/dp/B077HJFCQX
https://twitter.com/appsdevpk/status/848625244956901376
https://twitter.com/andrevar66/status/853789166987038720
https://twitter.com/nhuntwalker/status/845730837823840256
https://twitter.com/AustinGreen/status/845321540627521536
https://twitter.com/nicoleffe/status/833488391148822528
https://twitter.com/kvss1992/status/889197346344493056
https://twitter.com/erixtekila/status/840875459730657283
https://roadtoreact.com/
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://www.amazon.com/dp/B077HJFCQX
https://twitter.com/appsdevpk/status/848625244956901376
https://twitter.com/andrevar66/status/853789166987038720
https://twitter.com/nhuntwalker/status/845730837823840256
https://twitter.com/AustinGreen/status/845321540627521536
https://twitter.com/nicoleffe/status/833488391148822528
https://twitter.com/kvss1992/status/889197346344493056
https://twitter.com/erixtekila/status/840875459730657283

Testimonials iv

Student: “The best book to start learning ReactJS. The project moves along with the concepts being
learnt which helps to grasp the subject. I have found ‘Code and learn’ as best way to master
programming and this book exactly does that.”

Thomas Lockney¹³: “Pretty solid introduction to React that doesn’t try to be comprehensive. I just
wanted a taste to understand what it was about and this book gave me exactly that. I didn’t follow all
the little footnotes to learn about the new ES6 features I’ve missed (“I wouldn’t say I’ve been missing
it, Bob.”). But I’m sure for those of you who have fallen behind and are diligent about following those,
you can probably learn a lot more than just what the book teaches.”

¹³https://www.goodreads.com/review/show/1880673388

https://www.goodreads.com/review/show/1880673388
https://www.goodreads.com/review/show/1880673388

Education for Children
The book should enable everyone to learn React. However, not everyone is privileged to use those
resources, because not everyone is educated in the English language in the first place. Thus I want
to use the project to support projects that teach children English in the developing world.

• 1. April to 18. April, 2017, Giving Back, By Learning React¹⁴

¹⁴https://www.robinwieruch.de/giving-back-by-learning-react/

https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/giving-back-by-learning-react/

FAQ
How to get updates? I have two channels where I share updates about my content. Either you can
subscribe to updates by email¹⁵ or follow me on Twitter¹⁶. Regardless of the channel, my objective
is to only share qualitative content. You will never receive any spam. Once you get the update that
the book has changed, you can download the new version of it.

Does it use the recent React version? The book always receives an update when the React version
got updated. Usually books are outdated pretty soon after their release. Since this book is self-
published, I can update it whenever I want.

Does it cover Redux? It doesn’t. Therefore I have written a second book. The Road to learn React
should give you a solid foundation before you dive into advanced topics. The implementation of
the sample application in the book will show that you don’t need Redux to build an application in
React. After you have read the book, you should be able to implement a solid application without
Redux. Then you can read my second book, Taming the State in React, to learn Redux¹⁷.

Does it use JavaScript ES6? Yes. But don’t worry. You will be fine if you are familiar with JavaScript
ES5. All JavaScript ES6 features, that I describe on the journey to learn React, will transition from
ES5 to ES6 in the book. Every feature along the way will be explained. The book does not only teach
React, but also all useful JavaScript ES6 features for React.

How to get access to the source code projects and screencasts series? If you have bought one of
the extended packages that gives you access to the source code projects, screencast series or any other
addon, you should find these on your course dashboard¹⁸. If you have bought the course somewhere
else than on the official Road to React¹⁹ course platform, you need to create an account on the
platform, go to the Admin page and reach out to me with one of the email templates. Afterward I
can enroll you to the course. If you haven’t bought one of the extended packages, you can reach out
any time to upgrade your content to access the source code projects and screencast series.

How can I get help while reading the book? The book has a Slack Group²⁰ for people who are
reading the book. You can join the channel to get help or to help others. After all, helping others can
internalize your learnings, too. If there is no one out to help you, you can always reach out to me.

Is there any troubleshoot area? If you run into problems, please join the Slack Group. In addition,
you could have a look into the open issues on GitHub²¹ for the book. Perhaps your problem was
already mentioned and you can find the solution for it. If your problem wasn’t mentioned, don’t

¹⁵https://www.getrevue.co/profile/rwieruch
¹⁶https://twitter.com/rwieruch
¹⁷https://roadtoreact.com
¹⁸https://roadtoreact.com/my-courses
¹⁹https://roadtoreact.com
²⁰https://slack-the-road-to-learn-react.wieruch.com/
²¹https://github.com/rwieruch/the-road-to-learn-react/issues

https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://roadtoreact.com/
https://roadtoreact.com/my-courses
https://roadtoreact.com/
https://slack-the-road-to-learn-react.wieruch.com/
https://github.com/rwieruch/the-road-to-learn-react/issues
https://www.getrevue.co/profile/rwieruch
https://twitter.com/rwieruch
https://roadtoreact.com/
https://roadtoreact.com/my-courses
https://roadtoreact.com/
https://slack-the-road-to-learn-react.wieruch.com/
https://github.com/rwieruch/the-road-to-learn-react/issues

FAQ vii

hesitate to open a new issue where you can explain your problem, maybe provide a screenshot, and
some more details (e.g. book page, node version). After all, I try to ship all fixes in next editions of
the book.

Can I help to improve the content? Yes, I would love to hear your feedback. You can simply open
an issue on GitHub²². These can be improvements technical wise yet also about the written word. I
am no native speaker that’s why any help is appreciated. You can open pull requests on the GitHub
page as well.

Is there a money back guarantee? Yes, there is 100% money back guarantee for two months if you
don’t think it’s a good fit. Please reach out to me to get a refund.

How to support the project? If you believe in the content that I create, you can support me²³.
Furthermore, I would be grateful if you spread the word about this book after you read it and enjoyed
reading it. Furthermore, I would love to have you as my Patron on Patreon²⁴.

What’s your motivation behind the book? I want to teach about this topic in a consistent way.
You often find material online that doesn’t receive any updates or only teaches a small part of a
topic. When you learn something new, people struggle to find consistent and up-to-date resources
to learn from. I want to give you this consistent and up-to-date learning experience. In addition, I
hope I can support minorities with my projects by giving them the content for free or by having
other impacts²⁵. In addition, in the recent time, I found myself fulfilled when teaching others about
programming. It’s a meaningful activity for me that I prefer over any other 9 to 5 job at any company.
That’s why I hope to pursue this path in the future.

Is there a call to action? Yes. I want you to take a moment to think about a person who would be a
good match to learn React. The person could have shown the interest already, could be in the middle
of learning React or might not yet be aware about wanting to learn React. Reach out to that person
and share the book. It would mean a lot to me. The book is intended to be given to others.

²²https://github.com/rwieruch/the-road-to-learn-react
²³https://www.robinwieruch.de/about/
²⁴https://www.patreon.com/rwieruch
²⁵https://www.robinwieruch.de/giving-back-by-learning-react/

https://github.com/rwieruch/the-road-to-learn-react
https://www.robinwieruch.de/about/
https://www.patreon.com/rwieruch
https://www.robinwieruch.de/giving-back-by-learning-react/
https://www.robinwieruch.de/giving-back-by-learning-react/
https://github.com/rwieruch/the-road-to-learn-react
https://www.robinwieruch.de/about/
https://www.patreon.com/rwieruch
https://www.robinwieruch.de/giving-back-by-learning-react/

Change Log
10. January 2017:

• v2 Pull Request²⁶
• even more beginner friendly
• 37% more content
• 30% improved content
• 13 improved and new chapters
• 140 pages of learning material
• + interactive course of the book on educative.io²⁷

08. March 2017:

• v3 Pull Request²⁸
• 20% more content
• 25% improved content
• 9 new chapters
• 170 pages of learning material

15. April 2017:

• upgrade to React 15.5

5. July 2017:

• upgrade to node 8.1.3
• upgrade to npm 5.0.4
• upgrade to create-react-app 1.3.3

17. October 2017:

• upgrade to node 8.3.0
• upgrade to npm 5.5.1
• upgrade to create-react-app 1.4.1

²⁶https://github.com/rwieruch/the-road-to-learn-react/pull/18
²⁷https://www.educative.io/collection/5740745361195008/5676830073815040
²⁸https://github.com/rwieruch/the-road-to-learn-react/pull/34

https://github.com/rwieruch/the-road-to-learn-react/pull/18
https://www.educative.io/collection/5740745361195008/5676830073815040
https://github.com/rwieruch/the-road-to-learn-react/pull/34
https://github.com/rwieruch/the-road-to-learn-react/pull/18
https://www.educative.io/collection/5740745361195008/5676830073815040
https://github.com/rwieruch/the-road-to-learn-react/pull/34

Change Log ix

• upgrade to React 16
• v4 Pull Request²⁹
• 15% more content
• 15% improved content
• 3 new chapters (Bindings, Event Handlers, Error Handling)
• 190+ pages of learning material
• +9 Source Code Projects³⁰

17. February 2018:

• upgrade to node 8.9.4
• upgrade to npm 5.6.0
• upgrade to create-react-app 1.5.1
• v5 Pull Request³¹
• more learning paths
• extra reading material
• 1 new chapter (Axios instead of Fetch)

²⁹https://github.com/rwieruch/the-road-to-learn-react/pull/72
³⁰https://roadtoreact.com/course-details?courseId=THE_ROAD_TO_LEARN_REACT
³¹https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/105

https://github.com/rwieruch/the-road-to-learn-react/pull/72
https://roadtoreact.com/course-details?courseId=THE_ROAD_TO_LEARN_REACT
https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/105
https://github.com/rwieruch/the-road-to-learn-react/pull/72
https://roadtoreact.com/course-details?courseId=THE_ROAD_TO_LEARN_REACT
https://github.com/the-road-to-learn-react/the-road-to-learn-react/pull/105

How to read it?
The book is my attempt to teach React while you will write an application. It is a practical guide to
learn React and not a reference work about React. You will write a Hacker News application that
interacts with a real world API. Among several interesting topics, it covers state management in
React, caching and interactions (sorting and searching). On the way you will learn best practices
and patterns in React.

In addition, the book gives you a transition from JavaScript ES5 to JavaScript ES6. React embraces
a lot of JavaScript ES6 features and I want to show you how you can use them.

In general, each chapter of the book will build up on the previous chapter. Each chapter will teach you
something new. Don’t rush through the book. You should internalize each step. You could apply your
own implementations and read more about the topic. After each chapter I give you some reading
material and exercises. If you really want to learn React, I highly recommend to read the extra
material and do some hands on exercises. After you have read a chapter, make yourself comfortable
with the learnings before you continue.

In the end, you will have a complete React application in production. I am very keen to see your
results, so please text me when you have finished the book. The final chapter of the book will give
you a handful of options to continue your React journey. In general you will find a lot of React
related topics on my personal website³².

Since you are reading the book, I guess you are new to React. That’s perfect. In the end, I hope to
get your feedback to improve the material to enable everyone to learn React. You can have a direct
impact on GitHub³³ or text me on Twitter³⁴.

³²https://www.robinwieruch.de/
³³https://github.com/rwieruch/the-road-to-learn-react
³⁴https://twitter.com/rwieruch

https://www.robinwieruch.de/
https://github.com/rwieruch/the-road-to-learn-react
https://twitter.com/rwieruch
https://www.robinwieruch.de/
https://github.com/rwieruch/the-road-to-learn-react
https://twitter.com/rwieruch

Introduction to React
The chapter gives you an introduction to React. You may ask yourself: Why should I learn React
in the first place? This chapter seeks to answer that question. Afterward, you will dive into the
ecosystem by bootstrapping your first React application from scratch with zero-configuration. Along
the way, you will get an introduction to JSX and ReactDOM. So be prepared for your first React
components.

Introduction to React 2

Hi, my name is React.

Why should you bother to learn React? In recent years, single page applications (SPA³⁵) have
become popular. Frameworks like Angular, Ember, and Backbone helped JavaScript developers build
modern web applications beyond the usage of vanilla JavaScript and jQuery. This list of popular
solutions is not exhaustive, and there is a wide range of SPA frameworks. When you consider their
release dates, most of them are among the first generation of SPAs: Angular 2010, Backbone 2010
and Ember 2011.

React was initially released in 2013 by Facebook. React is not an SPA framework, but a view library. It
is the V in the MVC³⁶ (model view controller). It only enables you to render components as viewable
elements in a browser. Yet, the whole ecosystem around React makes it possible to build single page
applications.

But why should you consider using React over the first generation of SPA frameworks? While the
first generation of frameworks tried to solve many things at once, React is only used to build your
view layer. It is a library and not a framework. The idea behind React is that your view is a hierarchy
of composable components.

In React you can keep the focus on your view layer before you introduce more aspects to your
application. Additional aspects are building blocks for your SPA. These building blocks are essential
to build a mature application, and they come with two advantages.

Firstly, you can learn the building blocks one at a time without having to understand them altogether.
In contrast, an SPA framework gives you every building block from the start. This book focuses on
React as the first building block. More building blocks will eventually follow.

Secondly, all building blocks are interchangeable, which makes the ecosystem around React highly
innovative. Multiple solutions can compete with each other, and you can choose the most appealing
solution for your use case.

The first generation of SPA frameworks arrived at an enterprise level; these frameworks are more
rigid. React stays innovative and has been adopted by many tech thought leader companies like
Airbnb, Netflix and, of course, Facebook³⁷. These companies invest in the future of React and are
content with React and its ecosystem.

React is one of the best choices for building modern web applications nowadays. It only delivers the
view layer, but the React ecosystem is an entirely flexible and interchangeable framework³⁸. React
has a slim API, an amazing ecosystem, and a great community. You can read about my experiences
on why I moved from Angular to React³⁹. I highly recommend understanding why you would choose
React over another framework or library. After all, everyone is keen to experience where React will
lead us in the coming years.

³⁵https://en.wikipedia.org/wiki/Single-page_application
³⁶https://en.wikipedia.org/wiki/Modelâ€“viewâ€“controller
³⁷https://github.com/facebook/react/wiki/Sites-Using-React
³⁸https://www.robinwieruch.de/essential-react-libraries-framework/
³⁹https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Model%C3%A2%E2%82%AC%E2%80%9Cview%C3%A2%E2%82%AC%E2%80%9Ccontroller
https://github.com/facebook/react/wiki/Sites-Using-React
https://www.robinwieruch.de/essential-react-libraries-framework/
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Model%C3%A2%E2%82%AC%E2%80%9Cview%C3%A2%E2%82%AC%E2%80%9Ccontroller
https://github.com/facebook/react/wiki/Sites-Using-React
https://www.robinwieruch.de/essential-react-libraries-framework/
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/

Introduction to React 3

Exercises

• read about why I moved from Angular to React⁴⁰
• read about React’s flexible ecosystem⁴¹
• read about how to learn a framework⁴²

⁴⁰https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
⁴¹https://www.robinwieruch.de/essential-react-libraries-framework/
⁴²https://www.robinwieruch.de/how-to-learn-framework/

https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.robinwieruch.de/essential-react-libraries-framework/
https://www.robinwieruch.de/how-to-learn-framework/
https://www.robinwieruch.de/reasons-why-i-moved-from-angular-to-react/
https://www.robinwieruch.de/essential-react-libraries-framework/
https://www.robinwieruch.de/how-to-learn-framework/

Introduction to React 4

Requirements

What are the requirements to read this book? First of all, you should be familiar with the basics of
web development. You should know how to use HTML, CSS, and JavaScript. Perhaps it makes sense
to know the term API⁴³ too, because you will use APIs in this book. In addition, I encourage you to
join the official Slack Group⁴⁴ for the book to get help or to help others.

Editor and Terminal

What about the development environment? You will need a running editor or IDE and terminal
(command line tool). You can follow my setup guide⁴⁵. It is adjusted for MacOS users, but you can
find a Windows setup guide for React too. In general, there are many articles out there that will
show you how to set up a web development environment in a more elaborate way for your OS.

Optionally, you can use git to keep your projects and progress in repositories on GitHub while
conducting the exercises in this book. There is a short guide⁴⁶ on how to use these tools. But once
again, it is not mandatory for this book and can be overwhelming when learning everything from
scratch. You can skip it if you are a newcomer in web development and want to focus on the essential
parts taught in this book.

Node and NPM

Last but not least, you will need an installation of node and npm⁴⁷. Both are used to manage libraries
you will need along the way. In this book, you will install external node packages via npm (node
package manager). These node packages can be libraries or whole frameworks.

You can verify your versions of node and npm on the command line. If you don’t get any output in
the terminal, you need to install node and npm first. These are my versions at the time of writing
this book:

Command Line

node --version

*v8.9.4

npm --version

*v5.6.0

⁴³https://www.robinwieruch.de/what-is-an-api-javascript/
⁴⁴https://slack-the-road-to-learn-react.wieruch.com/
⁴⁵https://www.robinwieruch.de/developer-setup/
⁴⁶https://www.robinwieruch.de/git-essential-commands/
⁴⁷https://nodejs.org/en/

https://www.robinwieruch.de/what-is-an-api-javascript/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/
https://www.robinwieruch.de/what-is-an-api-javascript/
https://slack-the-road-to-learn-react.wieruch.com/
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/

Introduction to React 5

node and npm

This section of the chapter gives you a little crash course in node and npm. It is not exhaustive, but it
will cover all of the necessary tools. If you are familiar with both of them, you can skip this section.

The node packagemanager (npm) allows you to install external node packages from the command
line. These packages can be a set of utility functions, libraries, or whole frameworks, and they are the
dependencies of your application. You can either install these packages to your global node package
folder or to your local project folder.

Global node packages are accessible from everywhere in the terminal, and you only have to install
them to your global directory once. You can install a global package by typing in your terminal:

Command Line

npm install -g <package>

The -g flag tells npm to install the package globally. Local packages are used in your application.
For instance, React as a library will be a local package which can be required in your application for
usage. You can install it via the terminal by typing:

Command Line

npm install <package>

In the case of React it would be:

Command Line

npm install react

The installed package will automatically appear in a folder called node_modules/ and will be listed
in the package.json file next to your other dependencies.

But how do you initialize the node_modules/ folder and the package.json file for your project in the
first place? There is a npm command to initialize a npm project and thus a package.json file. Once
you have that file, you can install new local packages via npm.

Command Line

npm init -y

The -y flag is a shortcut to initialize all the defaults in your package.json. If you don’t use the flag,
you have to decide how to configure the file. After initializing your npm project, you are ready to
install new packages via npm install <package>.

Introduction to React 6

One more word about the package.json. The file enables you to share your project with other
developers without sharing all the node packages. The file has all the references of node packages
used in your project. These packages are called dependencies. Everyone can copy your project
without the dependencies. The dependencies are references in the package.json. Someone who copies
your project can simply install all packages by using npm install on the command line. The npm

install script takes all the dependencies listed in the package.json file and installs them in the
node_modules/ folder.

I want to cover one more npm command:

Command Line

npm install --save-dev <package>

The --save-dev flag indicates that the node package is only used in the development environment.
It will not be used in production when you deploy your application on a server. What kind of node
package would use this flag? Imagine you want to test your application with the help of a node
package. You need to install that package via npm, but you want to exclude it from your production
environment. Testing should only happen during the development process, but not when your
application is already running in production. At that point, you don’t want to test your application
anymore. It should be tested already and working out-of-the-box for your users. This is only one
use case where you would want to use the --save-dev flag.

You will encounter more npm commands along the way, but these will be sufficient for now.

There is one more important thing to be mentioned. Many people opt to use another package
manager to work with node packages in their applications. Yarn is a dependency manager that
works in a very similar way to npm. Is has its own list of commands to perform the same tasks, but
you still have access to the npm registry. Yarn was born to solve some issues that npm couldn’t. But
today, both tools are evolving really fast and you can choose to use whichever you want.

Exercises:

• setup a throw away npm project
– create a new folder with mkdir <folder_name>

– navigate into the folder with cd <folder_name>

– execute npm init -y or npm init

– install a local package like React with npm install react

– have a look into the package.json file and the node_modules/ folder
– find out on your own how to uninstall the react node package again

• read more about npm⁴⁸
• read more about yarn⁴⁹ package manager

⁴⁸https://docs.npmjs.com/
⁴⁹https://yarnpkg.com/en/docs/

https://docs.npmjs.com/
https://yarnpkg.com/en/docs/
https://docs.npmjs.com/
https://yarnpkg.com/en/docs/

Introduction to React 7

Installation

There are multiple approaches to getting started with a React application.

The first one is using a CDN, which may sound more complicated than it is. A CDN is a content
delivery network⁵⁰. Several companies have CDNs that host files publicly for people to consume.
These files can be libraries like React, since the bundled React library is just a react.js JavaScript file.
It can be hosted somewhere, and you can require it in your application.

How do you use a CDN to get started in React? You can inline the <script> tag in your HTML that
points to a CDN url. To get started in React, you need two files (libraries): react and react-dom.

Code Playground

<script crossorigin src="https://unpkg.com/react@16/umd/react.development.js"></scri\

pt>

<script crossorigin src="https://unpkg.com/react-dom@16/umd/react-dom.development.js\

"></script>

But why should you use a CDN when you have npm to install node packages such as React?

When your application has a package.json file, you can install react and react-dom from the
command line. However, the folder must be initialized as a npm project by using npm init -y

with a package.json file. You can install multiple node packages in one line with npm.

Command Line

npm install react react-dom

This approach is often used to add React to an existing application that is managed with npm.

Unfortunately, that is not everything. You would have to deal with Babel⁵¹ to make your application
aware of JSX (the React syntax) and JavaScript ES6. Babel transpiles your code so that browsers can
interpret JavaScript ES6 and JSX, because not all browsers are capable of interpreting the syntax. The
setup includes a lot of configuration and tooling, and it can be overwhelming for React newcomers
to bother with all the configuration.

Because of this, Facebook introduced create-react-app as a zero-configuration React solution. The
next chapter will show you how to setup your application by using this bootstrapping tool.

Exercises:

• read more about React installations⁵²

⁵⁰https://en.wikipedia.org/wiki/Content_delivery_network
⁵¹http://babeljs.io/
⁵²https://reactjs.org/docs/getting-started.html

https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Content_delivery_network
http://babeljs.io/
https://reactjs.org/docs/getting-started.html
https://en.wikipedia.org/wiki/Content_delivery_network
http://babeljs.io/
https://reactjs.org/docs/getting-started.html

Introduction to React 8

Zero-Configuration Setup

In the Road to learn React, you will use create-react-app⁵³ to bootstrap your application. It’s an
opinionated yet zero-configuration starter kit for React introduced by Facebook in 2016, and is rec-
ommended for beginners by 96% of React users⁵⁴. In create-react-app the tooling and configuration
evolve in the background while the focus is on the application implementation.

To get started, you must install the package to your global node packages. Afterwards, you always
have it available on the command line to bootstrap new React applications.

Command Line

npm install -g create-react-app

You can check the version of create-react-app to verify a successful installation on your command
line:

Command Line

create-react-app --version

*v1.5.1

Now you can bootstrap your first React application. We will call it hackernews, but you can choose
a different name. The bootstrapping takes a couple of seconds. Afterward, simply navigate into the
folder:

Command Line

create-react-app hackernews

cd hackernews

Now you can open the application in your editor. The following folder structure, or a variation of it
depending on the create-react-app version, should be presented to you:

⁵³https://github.com/facebookincubator/create-react-app
⁵⁴https://twitter.com/dan_abramov/status/806985854099062785

https://github.com/facebookincubator/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785
https://twitter.com/dan_abramov/status/806985854099062785
https://github.com/facebookincubator/create-react-app
https://twitter.com/dan_abramov/status/806985854099062785

Introduction to React 9

Folder Structure

hackernews/

README.md

node_modules/

package.json

.gitignore

public/

favicon.ico

index.html

manifest.json

src/

App.css

App.js

App.test.js

index.css

index.js

logo.svg

registerServiceWorker.js

Here is a short breakdown of the folders and files. It is okay if you don’t understand all of them in
the beginning.

• README.md: The .md extension indicates that the file is a markdown file. Markdown is
used as a lightweight markup language with plain text formatting syntax. Many source code
projects come with a README.md file to give you initial instructions about the project.
When pushing your project to a platform such as GitHub, the README.md file will show its
content prominently when you access the repository. Because you used create-react-app, your
README.md should be the same as shown in the official create-react-app GitHub repository⁵⁵.

• node_modules/: This folder has all the node packages that have been installed via npm. Since
you used create-react-app, there should already be a couple of node modules installed for you.
You will usually never touch this folder, because node packages are installed and uninstalled
with npm from the command line instead.

• package.json: This file shows you a list of node package dependencies and other project
configurations.

• .gitignore: This file indicates all files and folders that shouldn’t be added to your git repository
when using git; such files and folders should only be located in your local project. The node_-
modules/ folder is one such use case. It is sufficient to share the package.json file with your peers
to enable them to install all dependencies on their own without sharing the whole dependency
folder.

⁵⁵https://github.com/facebookincubator/create-react-app

https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app

Introduction to React 10

• public/: This folder holds development root files, such as public/index.html. This index is
the one displayed on localhost:3000 when developing your app. The boilerplate takes care of
relating this index with all the scripts in src/.

• build/ This folder will be created when you build the project for production, and it holds all of
the production files. Upon building your project for production, all of your written code in the
src/ and public/ folders are bundled into a couple of files and placed in the build folder.

• manifest.json and registerServiceWorker.js: Don’t worry about what these files do at this
stage, we won’t be needing them in this project.

You don’t need to touch the mentioned files and folders. In the beginning, everything you need is
located in the src/ folder. The main focus lies on the src/App.js file which is used to implement React
components. It will be used to implement your application, but later you might want to split up your
components into multiple files, where each file maintains one or a few components on its own.

Additionally, you will find a src/App.test.js file for your tests and a src/index.js as the entry point to
the React world. You will get to know both files in a later chapter. In addition, there is a src/index.css
and a src/App.css file to style your general application and components. They come with the default
style when you open them.

The create-react-app application is a npm project. You can use npm to install and uninstall node
packages to your project. Additionally, it comes with the following npm scripts for your command
line:

Command Line

Runs the application in http://localhost:3000

npm start

Runs the tests

npm test

Builds the application for production

npm run build

The scripts are defined in your package.json. Your boilerplate React application is bootstrapped now.
The following exercises will allow you to finally run your bootstrapped application in a browser.

Exercises:

• npm start your application and visit the application in your browser (you can exit the command
by pressing Control + C)

• run the interactive npm test script

Introduction to React 11

• run the npm run build script and verify that a build/ folder was added to your project (you
can remove it again afterward; note that the build folder can be used later on to deploy your
application⁵⁶)

• make yourself familiar with the folder structure
• make yourself familiar with the content of the files
• read more about the npm scripts and create-react-app⁵⁷

⁵⁶https://www.robinwieruch.de/deploy-applications-digital-ocean/
⁵⁷https://github.com/facebookincubator/create-react-app

https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://github.com/facebookincubator/create-react-app
https://www.robinwieruch.de/deploy-applications-digital-ocean/
https://github.com/facebookincubator/create-react-app

Introduction to React 12

Introduction to JSX

Now you will get to know JSX, which is the syntax in React. As mentioned before, create-
react-app has already bootstrapped a boilerplate application for you. All files come with default
implementations. In the beginning, the only file you will touch is the src/App.js file.

src/App.js

import React, { Component } from 'react';

import logo from './logo.svg';

import './App.css';

class App extends Component {

render() {

return (

<div className="App">

<header className="App-header">

<h1 className="App-title">Welcome to React</h1>

</header>

<p className="App-intro">

To get started, edit <code>src/App.js</code> and save to reload.

</p>

</div>

);

}

}

export default App;

Don’t let yourself get confused by the import/export statements and class declaration. These are
features of JavaScript ES6, and we will revisit them in a later chapter.

In the file you have a React ES6 class component with the name App. This is a component
declaration. Basically, after you have declared a component, you can use it as an element anywhere
in your application. It will produce an instance of your component or, in other words, the
component gets instantiated.

The element returned is specified in the render() method. Elements are what components are made
of. It is important to understand the differences between a component, an instance of a component,
and an element.

Pretty soon, you will see where the App component is instantiated. Otherwise, you wouldn’t see the
rendered output in the browser. The App component is only the declaration, but not the usage. You
can instantiate the component anywhere in your JSX with <App />.

Introduction to React 13

The content in the render block looks pretty similar to HTML, but it is actually JSX. JSX allows you
to mix HTML and JavaScript. It is powerful, but can be confusing when you are used to separating
your HTML and JavaScript. It is a good idea to start out by using basic HTML in your JSX. Therefore,
open the App.js file and remove all the unnecessary HTML code as illustrated below.

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

return (

<div className="App">

<h2>Welcome to the Road to learn React</h2>

</div>

);

}

}

export default App;

Now, you only return HTML in your render() method without any JavaScript. Let’s define the
“Welcome to the Road to learn React” as a variable. A variable can be used in your JSX by using
curly braces.

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

var helloWorld = 'Welcome to the Road to learn React';

return (

<div className="App">

<h2>{helloWorld}</h2>

</div>

);

}

}

export default App;

Introduction to React 14

It should work when you start your application on the command line with npm start again.

Additionally, you might have noticed the className attribute. It reflects the standard class attribute
in HTML. Due to technical reasons, JSX had to replace a handful of internal HTML attributes. You
can find all of the supported HTML attributes in the React documentation⁵⁸, which all follow the
camelCase convention. On your way to learn React, you will come across some more JSX specific
attributes.

Exercises:

• define more variables and render them in your JSX
– use a complex object to represent a user with a first name and last name
– render the user properties in your JSX

• read more about JSX⁵⁹
• read more about React components, elements and instances⁶⁰

⁵⁸https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
⁵⁹https://reactjs.org/docs/introducing-jsx.html
⁶⁰https://facebook.github.io/react/blog/2015/12/18/react-components-elements-and-instances.html

https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
https://reactjs.org/docs/introducing-jsx.html
https://facebook.github.io/react/blog/2015/12/18/react-components-elements-and-instances.html
https://reactjs.org/docs/dom-elements.html#all-supported-html-attributes
https://reactjs.org/docs/introducing-jsx.html
https://facebook.github.io/react/blog/2015/12/18/react-components-elements-and-instances.html

Introduction to React 15

ES6 const and let

You probably noticed that we declared the variable helloWorld with a var statement. JavaScript ES6
comes with two more options to declare your variables: const and let. In JavaScript ES6, you will
rarely find var anymore.

A variable declared with const cannot be re-assigned or re-declared, and cannot be changed or
modified (it is immutable). Once the data structure is defined, you cannot change it.

Code Playground

// not allowed

const helloWorld = 'Welcome to the Road to learn React';

helloWorld = 'Bye Bye React';

A variable declared with let can be modified.

Code Playground

// allowed

let helloWorld = 'Welcome to the Road to learn React';

helloWorld = 'Bye Bye React';

You would declare variables with let if you need to re-assign the variable later on.

However, you have to be careful with const. A variable declared with const cannot be modified.
However, when the variable is an array or object, the value it holds can get updated. The value it
holds is not immutable.

Code Playground

// allowed

const helloWorld = {

text: 'Welcome to the Road to learn React'

};

helloWorld.text = 'Bye Bye React';

When do you use each declaration? There are different opinions about the usage. I suggest using
const whenever you can. It indicates that you want to keep your data structure immutable even
though values in objects and arrays can be modified. If you want to modify your variable, you can
use let.

Immutability is embraced in React and its ecosystem. That’s why const should be your default
choice when you define a variable. Still, in complex objects the values within can be modified. Be
careful about this behavior.

In your application, you should use const over var.

Introduction to React 16

src/App.js

import React, { Component } from 'react';

import './App.css';

class App extends Component {

render() {

const helloWorld = 'Welcome to the Road to learn React';

return (

<div className="App">

<h2>{helloWorld}</h2>

</div>

);

}

}

export default App;

Exercises:

• read more about ES6 const⁶¹
• read more about ES6 let⁶²
• research more about immutable data structures

– why do they make sense in programming in general
– why are they used in React and its ecosystem

⁶¹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
⁶²https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let

Introduction to React 17

ReactDOM

Before we continue with the App component, you might want to see where it is used. It is located
in your entry point to the React world: the src/index.js file.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

import './index.css';

ReactDOM.render(

<App />,

document.getElementById('root')

);

Basically, ReactDOM.render() uses a DOM node in your HTML to replace it with your JSX.
That’s how you can easily integrate React in any foreign application. It is not forbidden to use
ReactDOM.render() multiple times across your application. You can use it at multiple places to
bootstrap simple JSX syntax, a React component, multiple React components, or a whole application.
In a plain React application, you would only use it once to bootstrap your whole component tree.

ReactDOM.render() expects two arguments. The first argument is JSX that gets rendered. The second
argument specifies the place where the React application hooks into your HTML. It expects an
element with an id='root'. You can open your public/index.html file to find the id attribute.

In the implementation, ReactDOM.render() already takes your App component. However, it would
be fine to pass simpler JSX as long as it is JSX. It doesn’t have to be an instantiation of a component.

Code Playground

ReactDOM.render(

<h1>Hello React World</h1>,

document.getElementById('root')

);

Exercises:

• open the public/index.html to see where the React applications hook into your HTML
• read more about rendering elements in React⁶³

⁶³https://reactjs.org/docs/rendering-elements.html

https://reactjs.org/docs/rendering-elements.html
https://reactjs.org/docs/rendering-elements.html

Introduction to React 18

Hot Module Replacement

Hot Module Replacement is one thing that you can do in the src/index.js file to improve your
experience as a developer, but it is optional and may overwhelm you as a beginner learning React.

By default, create-react-app will cause the browser to automatically refresh the page when your
source code is modified. Try it by changing the helloWorld variable in your src/App.js file, which
should cause the browser to refresh the page. However, there is a better way of handling source code
changes during development.

Hot Module Replacement (HMR) is a tool to reload your application in the browser, so that the
browser doesn’t perform a page refresh. You can easily activate it in create-react-app. In your
src/index.js, your entry point to React, add the following configuration.

src/index.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

import './index.css';

ReactDOM.render(

<App />,

document.getElementById('root')

);

if (module.hot) {

module.hot.accept();

}

That’s it. Again, change the helloWorld variable in your src/App.js file. The browser shouldn’t
perform a page refresh, but the application will reload and show the correct output. HMR comes
with multiple advantages:

Imagine you are debugging your code with console.log() statements. These statements will stay
in your developer console, even though you changed your code, because the browser doesn’t refresh
the page anymore. This can be convenient for many debugging purposes.

In a growing application, a page refresh delays your productivity, because you have to wait for
the page to load. A page reload can take several seconds in a large application. HMR removes this
disadvantage.

Finally, The largest benefit of HMR is that you can keep the application state after the application
reloads. Imagine you have a dialog or wizard in your application with multiple steps, and you are
at step 3. Without HMR you would change the source code and your browser would refresh the
page. You would have to open the dialog again and navigate from step 1 to step 3. With HMR your

Introduction to React 19

dialog stays open at step 3. It keeps the application state even though the source code changed. The
application itself reloads, but not the page.

Exercises:

• change your src/App.js source code a few times to see HMR in action
• watch the first 10 minutes of Live React: Hot Reloading with Time Travel⁶⁴ by Dan Abramov

⁶⁴https://www.youtube.com/watch?v=xsSnOQynTHs

https://www.youtube.com/watch?v=xsSnOQynTHs
https://www.youtube.com/watch?v=xsSnOQynTHs

Introduction to React 20

Complex JavaScript in JSX

Let’s get back to your App component. So far you have rendered some primitive variables in your
JSX. Now you will start to render a list of items. The list will be sample data in the beginning, but
later you will fetch the data from an external API⁶⁵, which will be far more exciting.

First you have to define the list of items.

src/App.js

import React, { Component } from 'react';

import './App.css';

const list = [

{

title: 'React',

url: 'https://facebook.github.io/react/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://github.com/reactjs/redux',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

class App extends Component {

...

}

The sample data will represent data we will fetch from the API later on. An item in the list has a title,
a url, and an author. Additionally, it comes with an identifier, points (which indicate how popular
an article is), and a count of comments.

Now you can use the built-in JavaScript map functionality in your JSX. It enables you to iterate over
your list of items to display them. Again, you will use curly braces to encapsulate the JavaScript
expression in your JSX.

⁶⁵https://www.robinwieruch.de/what-is-an-api-javascript/

https://www.robinwieruch.de/what-is-an-api-javascript/
https://www.robinwieruch.de/what-is-an-api-javascript/

Introduction to React 21

src/App.js

class App extends Component {

render() {

return (

<div className="App">

{list.map(function(item) {

return <div>{item.title}</div>;

})}

</div>

);

}

}

export default App;

Using JavaScript alongside HTML in JSX is very powerful. You might have used map to convert one
list of items to another list of items. This time you can use map to convert a list of items to HTML
elements.

So far, only the title will be displayed for each item. Let’s display some more of the item properties.

src/App.js

class App extends Component {

render() {

return (

<div className="App">

{list.map(function(item) {

return (

<div>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

</div>

);

}

}

Introduction to React 22

export default App;

You can see how the map function is simply inlined in your JSX. Each item property is displayed in
a tag. Moreover, the url property of the item is used in the href attribute of the anchor tag.

React will do all the work for you and display each item, but you should add one helper for React
to embrace its full potential and improve its performance. You have to assign a key attribute to each
list element. That way React is able to identify added, changed and removed items when the list
changes. The sample list items come with an identifier already.

src/App.js

{list.map(function(item) {

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

You should make sure that the key attribute is a stable identifier. Don’t make the mistake of using the
index of the item in the array, because the array index is not stable. For instance, if the list changes
its order, React will not be able to identify the items properly.

src/App.js

// don't do this

{list.map(function(item, key) {

return (

<div key={key}>

...

</div>

);

})}

You are displaying both list items now. You can start your app, open your browser, and see both
items of the list displayed.

Introduction to React 23

Exercises:

• read more about React lists and keys⁶⁶
• recap the standard built-in array functionalities in JavaScript⁶⁷
• use more JavaScript expressions on your own in JSX

⁶⁶https://reactjs.org/docs/lists-and-keys.html
⁶⁷https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

https://reactjs.org/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://reactjs.org/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Introduction to React 24

ES6 Arrow Functions

JavaScript ES6 introduced arrow functions. An arrow function expression is shorter than a function
expression.

Code Playground

// function declaration

function () { ... }

// arrow function declaration

() => { ... }

You have to be aware of the functionalities of arrow functions. One of the functionalities is different
behavior with the this object. A function expression always defines its own this object. Arrow
function expressions still have the this object of the enclosing context.

There is another valuable fact about arrow functions regarding the parentheses. You can remove the
parentheses if the function has only one argument, but you have to keep the parentheses if it gets
multiple arguments.

Code Playground

// allowed

item => { ... }

// allowed

(item) => { ... }

// not allowed

item, key => { ... }

// allowed

(item, key) => { ... }

Let’s take a look at the map function. You can write it more concisely with an ES6 arrow function.

Introduction to React 25

src/App.js

{list.map(item => {

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

);

})}

Additionally, you can remove the block body, meaning the curly braces, of the ES6 arrow function.
In a concise body, an implicit return is attached. Thus you can remove the return statement. This
will happen more often in this book, so be sure to understand the difference between a block body
and a concise body when using arrow functions.

src/App.js

{list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

)}

Your JSX looks more concise and readable now. It omits the function statement, the curly braces,
and the return statement. Instead a developer can focus on the implementation details.

Exercises:

• read more about ES6 arrow functions⁶⁸

⁶⁸https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions

Introduction to React 26

ES6 Classes

JavaScript ES6 introduced classes. Classes are commonly used in object-oriented programming
languages. JavaScript was and is very flexible in its programming paradigms. You can do functional
programming and object-oriented programming side-by-side for their particular use cases.

Even though React embraces functional programming, e.g. immutable data structures, classes are
used to declare components. They are called ES6 class components. React mixes the good parts of
both programming paradigms.

Let’s consider the following Developer class to examine a JavaScript ES6 class without thinking
about a component.

Code Playground

class Developer {

constructor(firstname, lastname) {

this.firstname = firstname;

this.lastname = lastname;

}

getName() {

return this.firstname + ' ' + this.lastname;

}

}

A class has a constructor to make it instantiable. The constructor can take arguments to assign it to
the class instance. Additionally, a class can define functions. Because the function is associated with
a class, it is called a method. It is often referenced as a class method.

The Developer class is only the class declaration. You can create multiple instances of a class by
invoking it. It is similar to the ES6 class component, which has a declaration, but you have to use it
somewhere else to instantiate it.

Let’s see how you can instantiate the class and how you can use its methods.

Code Playground

const robin = new Developer('Robin', 'Wieruch');

console.log(robin.getName());

// output: Robin Wieruch

React uses JavaScript ES6 classes for ES6 class components. You already used one ES6 class
component.

Introduction to React 27

src/App.js

import React, { Component } from 'react';

...

class App extends Component {

render() {

...

}

}

The App class extends from Component. Basically, when you declare the App component it extends
from another component. What does extend mean? In object-oriented programming, there is the
principle of inheritance, which means that functionalities can be passed from one class to another
class.

The App class extends functionality from the Component class. To be more specific, it inherits
functionalities from the Component class. The Component class is used to extend a basic ES6 class
to a ES6 component class. It has all the functionalities that a component in React needs to have. The
render method is one of these functionalities that you have already used. You will learn about other
component class methods later on.

The Component class encapsulates all the implementation details of a React component. It enables
developers to use classes as components in React.

The methods exposed by a React Component are its public interface. One of these methods must be
overridden, while the others don’t need to be overridden. You will learn about the latter ones when
the book arrives at lifecycle methods in a later chapter. The render() method has to be overridden,
because it defines the output of a React Component. Therefore, it must be defined.

Now you know the basics around JavaScript ES6 classes and how they are used in React to extend
them to components. You will learn more about the Component methods when the book describes
React lifecycle methods.

Exercises:

• read more about ES6 classes⁶⁹
• read more about JavaScript fundamentals before learning React⁷⁰

⁶⁹https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
⁷⁰https://www.robinwieruch.de/javascript-fundamentals-react-requirements/

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://www.robinwieruch.de/javascript-fundamentals-react-requirements/

Introduction to React 28

You have learned to bootstrap your own React application! Let’s recap the last chapters:

• React
– create-react-app bootstraps a React application
– JSX mixes up HTML and JavaScript to define the output of React components in their

render methods
– components, instances, and elements are different things in React
– ReactDOM.render() is an entry point for a React application to hook React into the DOM
– built-in JavaScript functionalities can be used in JSX

* map can be used to render a list of items as HTML elements
• ES6

– variable declarations with const and let can be used for specific use cases
* use const over let in React applications

– arrow functions can be used to keep your functions concise
– classes are used to define components in React by extending them

It makes sense to take a break at this point. Internalize the learnings and apply them on your own.
You can experiment with the source code you have written so far. You can find the source code in
the official repository⁷¹.

⁷¹https://github.com/the-road-to-learn-react/hackernews-client/tree/5.1

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.1
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.1

Basics in React
The chapter will guide you through the basics of React. It covers state and interactions in
components, because static components are a bit dull, aren’t they? Additionally, you will learn about
the different ways to declare a component and how to keep components composable and reusable.
Be prepared to breathe life into your components.

Basics in React 30

Internal Component State

Internal component state, also known as local state, allows you to save, modify and delete properties
that are stored in your component. The ES6 class component can use a constructor to initialize
internal component state later on. The constructor is called only once when the component
initializes.

Let’s introduce a class constructor.

src/App.js

class App extends Component {

constructor(props) {

super(props);

}

...

}

The App component is a subclass of Component: hence the extends Component in your App
component declaration. You will learn more about ES6 class components later on.

It is mandatory to call super(props);: it sets this.props in your constructor in case you want to
access them in the constructor. Otherwise, when accessing this.props in your constructor, they
would be undefined. You will learn more about the props of a React component later on.

Now, in your case, the initial state in your component should be the sample list of items.

src/App.js

const list = [

{

title: 'React',

url: 'https://facebook.github.io/react/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

...

];

class App extends Component {

Basics in React 31

constructor(props) {

super(props);

this.state = {

list: list,

};

}

...

}

The state is bound to the class by using the this object. Thus you can access the local state in your
whole component. For instance, it can be used in the render() method. Previously you have mapped
a static list of items in your render() method that was defined outside of your component. Now
you are about to use the list from your local state in your component.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

</div>

)}

</div>

);

}

}

The list is part of the component now. It resides in the internal component state. You could add
items, change items or remove items in and from your list. Every time you change your component

Basics in React 32

state, the render() method of your component will run again. That’s how you can simply change
your internal component state and be sure that the component re-renders and displays the correct
data that comes from the local state.

But be careful. Don’t mutate the state directly. You have to use a method called setState() to modify
your state. You will get to know it in a following chapter.

Exercises:

• experiment with the local state
– define more initial state in the constructor
– use and access the state in your render() method

• read more about the ES6 class constructor⁷²

⁷²https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor

Basics in React 33

ES6 Object Initializer

In JavaScript ES6, you can use a shorthand property syntax to initialize your objects more concisely.
Imagine the following object initialization:

Code Playground

const name = 'Robin';

const user = {

name: name,

};

When the property name in your object is the same as your variable name, you can do the following:

Code Playground

const name = 'Robin';

const user = {

name,

};

In your application, you can do the same. The list variable name and the state property name share
the same name.

Code Playground

// ES5

this.state = {

list: list,

};

// ES6

this.state = {

list,

};

Another neat helper are shorthand method names. In JavaScript ES6, you can initialize methods in
an object more concisely.

Basics in React 34

Code Playground

// ES5

var userService = {

getUserName: function (user) {

return user.firstname + ' ' + user.lastname;

},

};

// ES6

const userService = {

getUserName(user) {

return user.firstname + ' ' + user.lastname;

},

};

Last but not least, you are allowed to use computed property names in JavaScript ES6.

Code Playground

// ES5

var user = {

name: 'Robin',

};

// ES6

const key = 'name';

const user = {

[key]: 'Robin',

};

Perhaps computed property names make no sense for you yet. Why should you need them? In a later
chapter, you will come to a point where you can use them to allocate values by key in a dynamic
way in an object. It’s neat to generate lookup tables in JavaScript.

Exercises:

• experiment with ES6 object initializer
• read more about ES6 object initializer⁷³

⁷³https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer

Basics in React 35

Unidirectional Data Flow

Now you have some internal state in your App component. However, you have not manipulated
the local state yet. The state is static and thus is the component. A good way to experience state
manipulation is to have some component interaction.

Let’s add a button for each item in the displayed list. The button says “Dismiss” and is going to
remove the item from the list. It could be useful eventually when you only want to keep a list of
unread items and dismiss the items that you are not interested in.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

The onDismiss() class method is not defined yet. We will do it in a moment, but for now the focus
should be on the onClick handler of the button element. As you can see, the onDismiss() method

Basics in React 36

in the onClick handler is enclosed by another function. It is an arrow function. That way, you can
sneak in the objectID property of the item object to identify the item that will be dismissed. An
alternative way would be to define the function outside of the onClick handler and only pass the
defined function to the handler. A later chapter will explain the topic of handlers in elements in
more detail.

Did you notice the multilines for the button element? Note that elements with multiple attributes
get messy as one line at some point. That’s why the button element is used with multilines and
indentations to keep it readable. But it is not mandatory. It is only a code style recommendation that
I highly recommend.

Now you have to implement the onDismiss() functionality. It takes an id to identify the item to
dismiss. The function is bound to the class and thus becomes a class method. That’s why you access
it with this.onDismiss() and not onDismiss(). The this object is your class instance. In order to
define the onDismiss() as class method, you have to bind it in the constructor. Bindings will be
explained in another chapter later on.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onDismiss = this.onDismiss.bind(this);

}

render() {

...

}

}

In the next step, you have to define its functionality, the business logic, in your class. Class methods
can be defined the following way.

Basics in React 37

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onDismiss = this.onDismiss.bind(this);

}

onDismiss(id) {

...

}

render() {

...

}

}

Now you are able to define what happens inside of the class method. Basically you want to remove
the item identified by the id from the list and store an updated list to your local state. Afterward,
the updated list will be used in the re-running render() method to display it. The removed item
shouldn’t appear anymore.

You can remove an item from a list by using the JavaScript built-in filter functionality. The filter
function takes a function as input. The function has access to each value in the list, because it iterates
over the list. That way, you can evaluate each item in the list based on a filter condition. If the
evaluation for an item is true, the item stays in the list. Otherwise it will be filtered from the list.
Additionally, it is good to know that the function returns a new list and doesn’t mutate the old list.
It supports the convention in React of having immutable data structures.

src/App.js

onDismiss(id) {

const updatedList = this.state.list.filter(function isNotId(item) {

return item.objectID !== id;

});

}

In the next step, you can extract the function and pass it to the filter function.

Basics in React 38

src/App.js

onDismiss(id) {

function isNotId(item) {

return item.objectID !== id;

}

const updatedList = this.state.list.filter(isNotId);

}

In addition, you can do it more concisely by using a JavaScript ES6 arrow function again.

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedList = this.state.list.filter(isNotId);

}

You could even inline it again, like you did in the onClick handler of the button, but it might get
less readable.

src/App.js

onDismiss(id) {

const updatedList = this.state.list.filter(item => item.objectID !== id);

}

The list removes the clicked item now. However the state isn’t updated yet. Therefore you can finally
use the setState() class method to update the list in the internal component state.

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedList = this.state.list.filter(isNotId);

this.setState({ list: updatedList });

}

Now run again your application and try the “Dismiss” button. It should work. What you experience
now is the unidirectional data flow in React. You trigger an action in your view with onClick(),
a function or class method modifies the internal component state and the render() method of the
component runs again to update the view.

Basics in React 39

Exercises:

• read more about the state and lifecycle in React⁷⁴

⁷⁴https://reactjs.org/docs/state-and-lifecycle.html

https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html

Basics in React 40

Bindings

It is important to learn about bindings in JavaScript classes when using React ES6 class components.
In the previous chapter, you have bound your class method onDismiss() in the constructor.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onDismiss = this.onDismiss.bind(this);

}

...

}

Why would you do that in the first place? The binding step is necessary, because class methods don’t
automatically bind this to the class instance. Let’s demonstrate it with the help of the following ES6
class component.

Code Playground

class ExplainBindingsComponent extends Component {

onClickMe() {

console.log(this);

}

render() {

return (

<button

onClick={this.onClickMe}

type="button"

>

Click Me

</button>

);

}

}

Basics in React 41

The component renders just fine, but when you click the button, you will get undefined in your
developer console log. That’s a main source of bugs when using React, because if you want to access
this.state in your class method, it cannot be retrieved because this is undefined. So in order to
make this accessible in your class methods, you have to bind the class methods to this.

In the following class component the class method is properly bound in the class constructor.

Code Playground

class ExplainBindingsComponent extends Component {

constructor() {

super();

this.onClickMe = this.onClickMe.bind(this);

}

onClickMe() {

console.log(this);

}

render() {

return (

<button

onClick={this.onClickMe}

type="button"

>

Click Me

</button>

);

}

}

When trying the button again, the this object, to be more specific the class instance, should be
defined and you would be able to access this.state, or as you will later learn this.props, now.

The class method binding can happen somewhere else too. For instance, it can happen in the
render() class method.

Basics in React 42

Code Playground

class ExplainBindingsComponent extends Component {

onClickMe() {

console.log(this);

}

render() {

return (

<button

onClick={this.onClickMe.bind(this)}

type="button"

>

Click Me

</button>

);

}

}

But you should avoid it, because it would bind the class method every time when the render()

method runs. Basically it runs every time your component updates which leads to performance
implications. When binding the class method in the constructor, you bind it only once in the
beginning when the component is instantiated. That’s a better approach to do it.

Another thing people sometimes come up with is defining the business logic of their class methods
in the constructor.

Code Playground

class ExplainBindingsComponent extends Component {

constructor() {

super();

this.onClickMe = () => {

console.log(this);

}

}

render() {

return (

<button

onClick={this.onClickMe}

type="button"

>

Click Me

Basics in React 43

</button>

);

}

}

You should avoid it too, because it will clutter your constructor over time. The constructor is only
there to instantiate your class with all its properties. That’s why the business logic of class methods
should be defined outside of the constructor.

Code Playground

class ExplainBindingsComponent extends Component {

constructor() {

super();

this.doSomething = this.doSomething.bind(this);

this.doSomethingElse = this.doSomethingElse.bind(this);

}

doSomething() {

// do something

}

doSomethingElse() {

// do something else

}

...

}

Last but not least, it is worth to mention that class methods can be auto-bound automatically without
binding them explicitly by using JavaScript ES6 arrow functions.

Code Playground

class ExplainBindingsComponent extends Component {

onClickMe = () => {

console.log(this);

}

render() {

return (

<button

onClick={this.onClickMe}

Basics in React 44

type="button"

>

Click Me

</button>

);

}

}

If the repetitive binding in the constructor annoys you, you can go ahead with this approach instead.
The official React documentation sticks to the class method bindings in the constructor. That’s why
the book will stick to those as well.

Exercises:

• try the different approaches of bindings and console log the this object

Basics in React 45

Event Handler

The chapter should give you a deeper understanding of event handlers in elements. In your
application, you are using the following button element to dismiss an item from the list.

src/App.js

...

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

...

That’s already a complex use case, because you have to pass a value to the class method and thus you
have to wrap it into another (arrow) function. So basically, it has to be a function that is passed to
the event handler. The following code wouldn’t work, because the class method would be executed
immediately when you open the application in the browser.

src/App.js

...

<button

onClick={this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

...

When using onClick={doSomething()}, the doSomething() function would execute immediately
when you open the application in your browser. The expression in the handler is evaluated. Since
the returned value of the function isn’t a function anymore, nothing would happen when you click
the button. But when using onClick={doSomething} whereas doSomething is a function, it would be
executed when clicking the button. The same rules apply for the onDismiss() class method that is
used in your application.

However, using onClick={this.onDismiss} wouldn’t suffice, because somehow the item.objectID

property needs to be passed to the class method to identify the item that is going to be dismissed.

Basics in React 46

That’s why it can be wrapped into another function to sneak in the property. The concept is called
higher-order functions in JavaScript and will be explained briefly later on.

src/App.js

...

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

...

A workaround would be to define the wrapping function somewhere outside and only pass the
defined function to the handler. Since it needs access to the individual item, it has to live in the
inside of the map function block.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item => {

const onHandleDismiss = () =>

this.onDismiss(item.objectID);

return (

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={onHandleDismiss}

type="button"

Basics in React 47

>

Dismiss

</button>

</div>

);

}

)}

</div>

);

}

}

After all, it has to be a function that is passed to the element’s handler. As an example, try this code
instead:

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

...

<button

onClick={console.log(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

It will run when you open the application in the browser but not when you click the button. Whereas

Basics in React 48

the following code would only run when you click the button. It is a function that is executed when
you trigger the handler.

src/App.js

...

<button

onClick={function () {

console.log(item.objectID)

}}

type="button"

>

Dismiss

</button>

...

In order to keep it concise, you can transform it into a JavaScript ES6 arrow function again. That’s
what we did with the onDismiss() class method too.

src/App.js

...

<button

onClick={() => console.log(item.objectID)}

type="button"

>

Dismiss

</button>

...

Often newcomers to React have difficulties with the topic of using functions in event handlers.
That’s why I tried to explain it in more detail here. In the end, you should end up with the following
code in your button to have a concisely inlined JavaScript ES6 arrow function that has access to the
objectID property of the item object.

Basics in React 49

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

{this.state.list.map(item =>

<div key={item.objectID}>

...

<button

onClick={() => this.onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

Another performance relevant topic, that is often mentioned, are the implications of using arrow
functions in event handlers. For instance, the onClick handler for the onDismiss() method is
wrapping the method in another arrow function to be able to pass the item identifier. So every
time the render() method runs, the handler instantiates the higher-order arrow function. It can
have an impact on your application performance, but in most cases you will not notice it. Imagine
you have a huge table of data with 1000 items and each row or column has such an arrow function
in an event handler. Then it is worth thinking about the performance implications and therefore you
could implement a dedicated Button component to bind the method in the constructor. But before
that happens it is premature optimization. It is more valuable to focus on learning React itself.

Exercises:

• try the different approaches of using functions in the onClick handler of your button

Basics in React 50

Interactions with Forms and Events

Let’s add another interaction for the application to experience forms and events in React. The
interaction is a search functionality. The input of the search field should be used to temporarily
filter your list based on the title property of an item.

In the first step, you are going to define a form with an input field in your JSX.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input type="text" />

</form>

{this.state.list.map(item =>

...

)}

</div>

);

}

}

In the following scenario you will type into the input field and filter the list temporarily by the
search term that is used in the input field. To be able to filter the list based on the value of the input
field, you need to store the value of the input field in your local state. But how do you access the
value? You can use synthetic events in React to access the event payload.

Let’s define a onChange handler for the input field.

Basics in React 51

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

type="text"

onChange={this.onSearchChange}

/>

</form>

...

</div>

);

}

}

The function is bound to the component and thus a class method again. You have to bind and define
the method.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

};

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

onSearchChange() {

...

}

Basics in React 52

...

}

When using a handler in your element, you get access to the synthetic React event in your callback
function’s signature.

src/App.js

class App extends Component {

...

onSearchChange(event) {

...

}

...

}

The event has the value of the input field in its target object. Hence you are able to update the local
state with the search term by using this.setState() again.

src/App.js

class App extends Component {

...

onSearchChange(event) {

this.setState({ searchTerm: event.target.value });

}

...

}

Additionally, you shouldn’t forget to define the initial state for the searchTerm property in the
constructor. The input field should be empty in the beginning and thus the value should be an
empty string.

Basics in React 53

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

list,

searchTerm: '',

};

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

}

Now you store the input value to your internal component state every time the value in the input
field changes.

A brief note about updating the local state in a React component. It would be fair to assume that when
updating the searchTerm with this.setState() the list needs to be passed as well to preserve it. But
that isn’t the case. React’s this.setState() is a shallow merge. It preserves the sibling properties
in the state object when updating one sole property in it. Thus the list state, even though you have
already dismissed an item from it, would stay the same when updating the searchTerm property.

Let’s get back to your application. The list isn’t filtered yet based on the input field value that is
stored in the local state. Basically you have to filter the list temporarily based on the searchTerm.
You have everything you need to filter it. So how to filter it temporarily now? In your render()

method, before you map over the list, you can apply a filter on it. The filter would only evaluate if
the searchTerm matches the title property of the item. You have already used the built-in JavaScript
filter functionality, so let’s do it again. You can sneak in the filter function before the map function,
because the filter function returns a new array and thus the map function can be used on it in such
a convenient way.

Basics in React 54

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

type="text"

onChange={this.onSearchChange}

/>

</form>

{this.state.list.filter(...).map(item =>

...

)}

</div>

);

}

}

Let’s approach the filter function in a different way this time. We want to define the filter argument,
the function that is passed to the filter function, outside of the ES6 class component. There we don’t
have access to the state of the component and thus we have no access to the searchTerm property
to evaluate the filter condition. We have to pass the searchTerm to the filter function and have to
return a new function to evaluate the condition. That’s called a higher-order function.

Normally I wouldn’t mention higher-order functions, but in a React book it makes total sense. It
makes sense to know about higher-order functions, because React deals with a concept called higher-
order components. You will get to know the concept later in the book. Now again, let’s focus on the
filter functionality.

First, you have to define the higher-order function outside of your App component.

Basics in React 55

src/App.js

function isSearched(searchTerm) {

return function (item) {

// some condition which returns true or false

}

}

class App extends Component {

...

}

The function takes the searchTerm and returns another function, because after all the filter function
takes a function as its input. The returned function has access to the item object because it is the
function that is passed to the filter function. In addition, the returned function will be used to filter
the list based on the condition defined in the function. Let’s define the condition.

src/App.js

function isSearched(searchTerm) {

return function (item) {

return item.title.toLowerCase().includes(searchTerm.toLowerCase());

}

}

class App extends Component {

...

}

The condition says that you match the incoming searchTerm pattern with the title property of the
item from your list. You can do that with the built-in includes JavaScript functionality. Only when
the pattern matches, you return true and the item stays in the list. When the pattern doesn’t match
the item is removed from the list. But be careful with pattern matching: You shouldn’t forget to
lower case both strings. Otherwise there will be mismatches between a search term ‘redux’ and an
item title ‘Redux’. Since we are working on a immutable list and return a new list by using the filter
function, the original list in the local state isn’t modified at all.

One thing is left to mention: We cheated a bit by using the built-in includes JavaScript functionality.
It is already an ES6 feature. How would that look like in JavaScript ES5? You would use the indexOf()
function to get the index of the item in the list. When the item is in the list, indexOf() will return
its index in the array.

Basics in React 56

Code Playground

// ES5

string.indexOf(pattern) !== -1

// ES6

string.includes(pattern)

Another neat refactoring can be done with an ES6 arrow function again. It makes the function more
concise:

Code Playground

// ES5

function isSearched(searchTerm) {

return function (item) {

return item.title.toLowerCase().indexOf(searchTerm.toLowerCase()) !== -1;

}

}

// ES6

const isSearched = searchTerm => item =>

item.title.toLowerCase().includes(searchTerm.toLowerCase());

One could argue which function is more readable. Personally I prefer the second one. The React
ecosystem uses a lot of functional programming concepts. It happens often that you will use a
function which returns a function (higher-order functions). In JavaScript ES6, you can express these
more concisely with arrow functions.

Last but not least, you have to use the defined isSearched() function to filter your list. You pass it
the searchTerm property from your local state, it returns the filter input function, and filters your
list based on the filter condition. Afterward it maps over the filtered list to display an element for
each list item.

src/App.js

class App extends Component {

...

render() {

return (

<div className="App">

<form>

<input

Basics in React 57

type="text"

onChange={this.onSearchChange}

/>

</form>

{this.state.list.filter(isSearched(this.state.searchTerm)).map(item =>

...

)}

</div>

);

}

}

The search functionality should work now. Try it yourself in the browser.

Exercises:

• read more about React events⁷⁵
• read more about higher-order functions⁷⁶

⁷⁵https://reactjs.org/docs/handling-events.html
⁷⁶https://en.wikipedia.org/wiki/Higher-order_function

https://reactjs.org/docs/handling-events.html
https://en.wikipedia.org/wiki/Higher-order_function
https://reactjs.org/docs/handling-events.html
https://en.wikipedia.org/wiki/Higher-order_function

Basics in React 58

ES6 Destructuring

There is a way in JavaScript ES6 for an easier access to properties in objects and arrays. It’s called
destructuring. Compare the following snippet in JavaScript ES5 and ES6.

Code Playground

const user = {

firstname: 'Robin',

lastname: 'Wieruch',

};

// ES5

var firstname = user.firstname;

var lastname = user.lastname;

console.log(firstname + ' ' + lastname);

// output: Robin Wieruch

// ES6

const { firstname, lastname } = user;

console.log(firstname + ' ' + lastname);

// output: Robin Wieruch

While you have to add an extra line each time you want to access an object property in JavaScript
ES5, you can do it in one line in JavaScript ES6. A best practice for readability is to use multilines
when you destructure an object into multiple properties.

Code Playground

const {

firstname,

lastname

} = user;

The same goes for arrays. You can destructure them too. Again, multilines will keep your code
scannable and readable.

Basics in React 59

Code Playground

const users = ['Robin', 'Andrew', 'Dan'];

const [

userOne,

userTwo,

userThree

] = users;

console.log(userOne, userTwo, userThree);

// output: Robin Andrew Dan

Perhaps you have noticed that the local state object in the App component can get destructured the
same way. You can shorten the filter and map line of code.

src/App.js

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

...

{list.filter(isSearched(searchTerm)).map(item =>

...

)}

</div>

);

You can do it the ES5 or ES6 way:

Code Playground

// ES5

var searchTerm = this.state.searchTerm;

var list = this.state.list;

// ES6

const { searchTerm, list } = this.state;

But since the book uses JavaScript ES6 most of the time, you should stick to it.

Exercises:

• read more about ES6 destructuring⁷⁷

⁷⁷https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Basics in React 60

Controlled Components

You already learned about the unidirectional data flow in React. The same law applies for the input
field, which updates the local state with the searchTerm in order to filter the list. When the state
changes, the render() method runs again and uses the recent searchTerm from the local state to
apply the filter condition.

But didn’t we forget something in the input element? A HTML input tag comes with a value

attribute. The value attribute usually has the value that is shown in the input field. In this case
it would be the searchTerm property. However, it seems like we don’t need that in React.

That’s wrong. Form elements such as <input>, <textarea> and <select> hold their own state in
plain HTML. They modify the value internally once someone changes it from the outside. In React
that’s called an uncontrolled component, because it handles its own state. In React, you should
make sure to make those elements controlled components.

How should you do that? You only have to set the value attribute of the input field. The value is
already saved in the searchTerm state property. So why not access it from there?

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<form>

<input

type="text"

value={searchTerm}

onChange={this.onSearchChange}

/>

</form>

...

</div>

);

}

}

That’s it. The unidirectional data flow loop for the input field is self-contained now. The internal
component state is the single source of truth for the input field.

Basics in React 61

The whole internal state management and unidirectional data flow might be new to you. But once
you are used to it, it will be your natural flow to implement things in React. In general, React brought
a novel pattern with the unidirectional data flow to the world of single page applications. It is now
adopted by several frameworks and libraries.

Exercises:

• read more about React forms⁷⁸
• learn more about different controlled components⁷⁹

⁷⁸https://reactjs.org/docs/forms.html
⁷⁹https://github.com/the-road-to-learn-react/react-controlled-components-examples

https://reactjs.org/docs/forms.html
https://github.com/the-road-to-learn-react/react-controlled-components-examples
https://reactjs.org/docs/forms.html
https://github.com/the-road-to-learn-react/react-controlled-components-examples

Basics in React 62

Split Up Components

You now have one large App component, that keeps growing and can eventually become confusing.
Let’s start to split it up into chunks of smaller components, creating separate components for the
search input and for the list of items.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search />

<Table />

</div>

);

}

}

You can pass those components properties which they can use themselves. In the case of the App
component it needs to pass the properties managed in the local state and its class methods.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search

value={searchTerm}

onChange={this.onSearchChange}

/>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

Basics in React 63

/>

</div>

);

}

}

Now you can define the components next to your App component. Those components will be ES6
class components as well. They render the same elements like before.

The first one is the Search component.

src/App.js

class App extends Component {

...

}

class Search extends Component {

render() {

const { value, onChange } = this.props;

return (

<form>

<input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

}

The second one is the Table component.

src/App.js

...

class Table extends Component {

render() {

const { list, pattern, onDismiss } = this.props;

return (

<div>

{list.filter(isSearched(pattern)).map(item =>

Basics in React 64

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

onClick={() => onDismiss(item.objectID)}

type="button"

>

Dismiss

</button>

</div>

)}

</div>

);

}

}

Now you have three ES6 class components. Perhaps you have noticed the props object that is
accessible via the class instance by using this. The props, short for properties, have all the values you
have passed to the components when you used them in your App component. That way, components
can pass properties down the component tree.

By extracting those components from the App component, they have become reusable. Since
components get their values by using the props object, you can pass different props to your
components every time you use them somewhere else.

Exercises:

• figure out further components that you could split up as you have done with the Search and
Table components
– but don’t do it now, otherwise you will run into conflicts in the next chapters

Basics in React 65

Composable Components

There is one more little property which is accessible in the props object: the children prop. You can
use it to pass elements to your components from above, which are unknown to the component itself
but which make it possible to compose your components together. Let’s see how this looks when
you pass a text string, as a child, to the Search component.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="App">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

}

}

Now the Search component can destructure the children property from the props object, and specify
where it should be displayed.

Basics in React 66

src/App.js

class Search extends Component {

render() {

const { value, onChange, children } = this.props;

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

}

The “Search” text should now be visible next to your input field. And, when you use the Search
component somewhere else, you can, if you like, use different text. After all, it’s not only text that
can be passed as children. You can pass an element, or element trees (which can be encapsulated by
components again), as children. The children property makes it possible to weave components into
each other.

Exercises:

• read more about the composition model of React⁸⁰

⁸⁰https://reactjs.org/docs/composition-vs-inheritance.html

https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html

Basics in React 67

Reusable Components

Reusable and composable components empower you to come up with capable component hierar-
chies. They are the foundation of React’s view layer. The last chapters mentioned reusability. Now,
you can reuse the Table and Search components. Even the App component is reusable, as you could
instantiate it somewhere else again.

Let’s define one more reusable component, a Button component, which will, eventually, be reused
more often.

src/App.js

class Button extends Component {

render() {

const {

onClick,

className,

children,

} = this.props;

return (

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

);

}

}

It might seem redundant to declare a component such as this. You will use a Button component
instead of a button element. It only spares the type="button". Except for the type attribute you
have to define everything else when you want to use the Button component. But you have to think
about the long term investment here. Imagine you have several buttons in your application, but
want to change an attribute, style or behavior for the button. Without the component you would
have to refactor every button. Instead the Button component ensures to have only one single source
of truth. One Button to refactor all buttons at once. One Button to rule them all.

Since you already have a button element, you can use the Button component instead. It omits the
type attribute, because the Button component specifies it.

Basics in React 68

src/App.js

class Table extends Component {

render() {

const { list, pattern, onDismiss } = this.props;

return (

<div>

{list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button onClick={() => onDismiss(item.objectID)}>

Dismiss

</Button>

</div>

)}

</div>

);

}

}

The Button component expects a className property in the props. The className attribute is another
React derivate for the HTML attribute class. But we didn’t pass any className when the Button was
used. In the code it should be more explicit in the Button component that the className is optional.
Therefore, you can assign a default value in your object destructuring.

src/App.js

class Button extends Component {

render() {

const {

onClick,

className = '',

children,

} = this.props;

...

Basics in React 69

}

}

Now, whenever there is no className property specified when using the Button component, the
value will be an empty string instead of undefined.

Basics in React 70

Component Declarations

By now you have four ES6 class components. But you can do better. Let me introduce functional
stateless components as alternative for ES6 class components. Before you refactor your components,
let’s introduce the different types of components in React.

• Functional Stateless Components: These components are functions which get an input and
return an output. The input are the props. The output is a component instance thus plain JSX.
So far it is quite similar to an ES6 class component. However, functional stateless components
are functions (functional) and they have no local state (stateless). You cannot access or update
the state with this.state or this.setState() because there is no this object. Additionally,
they have no lifecycle methods. You didn’t learn about lifecycle methods yet, but you already
used two: constructor() and render(). Whereas the constructor runs only once in the lifetime
of a component, the render() class method runs once in the beginning and every time the
component updates. Keep in mind that functional stateless components have no lifecycle
methods, when you arrive at the lifecycle methods chapter later on.

• ES6 Class Components: You already used this type of component declaration in your four
components. In the class definition, they extend from the React component. The extend hooks
all the lifecycle methods, available in the React component API, to the component. That way
you were able to use the render() class method. Additionally, you can store and manipulate
state in ES6 class components by using this.state and this.setState().

• React.createClass: The component declaration was used in older versions of React and still
in JavaScript ES5 React applications. But Facebook declared it as deprecated⁸¹ in favor of
JavaScript ES6. They even added a deprecation warning in version 15.5⁸². You will not use
it in the book.

So basically there are only two component declarations left. But when to use functional stateless
components over ES6 class components? A rule of thumb is to use functional stateless components
when you don’t need local state or component lifecycle methods. Usually you start to implement
your components as functional stateless components. Once you need access to the state or lifecycle
methods, you have to refactor it to an ES6 class component. In our application, we started the other
way around for the sake of learning React.

Let’s get back to your application. The App component uses internal state. That’s why it has to stay
as an ES6 class component. But the other three of your ES6 class components are stateless. They
don’t need access to this.state or this.setState(). Even more, they have no lifecycle methods.
Let’s refactor together the Search component to a stateless functional component. The Table and
Button component refactoring will remain as your exercise.

⁸¹https://facebook.github.io/react/blog/2015/03/10/react-v0.13.html
⁸²https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html

https://facebook.github.io/react/blog/2015/03/10/react-v0.13.html
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html
https://facebook.github.io/react/blog/2015/03/10/react-v0.13.html
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html

Basics in React 71

src/App.js

function Search(props) {

const { value, onChange, children } = props;

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

That’s basically it. The props are accessible in the function signature and the return value is JSX.
But you can do more code wise in a functional stateless component. You already know the ES6
destructuring. The best practice is to use it in the function signature to destructure the props.

src/App.js

function Search({ value, onChange, children }) {

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

But it can get better. You know already that ES6 arrow functions allow you to keep your functions
concise. You can remove the block body of the function. In a concise body an implicit return is
attached thus you can remove the return statement. Since your functional stateless component is a
function, you can keep it concise as well.

Basics in React 72

src/App.js
const Search = ({ value, onChange, children }) =>

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

The last step was especially useful to enforce only to have props as input and JSX as output. Nothing
in between. Still, you could do something in between by using a block body in your ES6 arrow
function.

Code Playground
const Search = ({ value, onChange, children }) => {

// do something

return (

<form>

{children} <input

type="text"

value={value}

onChange={onChange}

/>

</form>

);

}

But you don’t need it for now. That’s why you can keep the previous version without the block body.
When using block bodies, people often tend to do too many things in the function. By leaving the
block body out, you can focus on the input and output of your function.

Now you have one lightweight functional stateless component. Once you would need access to its
internal component state or lifecycle methods, you would refactor it to an ES6 class component. In
addition you saw how JavaScript ES6 can be used in React components to make them more concise
and elegant.

Exercises:

• refactor the Table and Button component to stateless functional components
• read more about ES6 class components and functional stateless components⁸³

⁸³https://reactjs.org/docs/components-and-props.html

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html

Basics in React 73

Styling Components

Let’s add some basic styling to your application and components. You can reuse the src/App.css and
src/index.css files. These files should already be in your project since you have bootstrapped it with
create-react-app. They should be imported in your src/App.js and src/index.js files too. I prepared
some CSS which you can simply copy and paste to these files, but feel free to use your own style at
this point.

First, styling for your overall application.

src/index.css

body {

color: #222;

background: #f4f4f4;

font: 400 14px CoreSans, Arial, sans-serif;

}

a {

color: #222;

}

a:hover {

text-decoration: underline;

}

ul, li {

list-style: none;

padding: 0;

margin: 0;

}

input {

padding: 10px;

border-radius: 5px;

outline: none;

margin-right: 10px;

border: 1px solid #dddddd;

}

button {

padding: 10px;

border-radius: 5px;

border: 1px solid #dddddd;

Basics in React 74

background: transparent;

color: #808080;

cursor: pointer;

}

button:hover {

color: #222;

}

*:focus {

outline: none;

}

Second, styling for your components in the App file.

src/App.css

.page {

margin: 20px;

}

.interactions {

text-align: center;

}

.table {

margin: 20px 0;

}

.table-header {

display: flex;

line-height: 24px;

font-size: 16px;

padding: 0 10px;

justify-content: space-between;

}

.table-empty {

margin: 200px;

text-align: center;

font-size: 16px;

}

.table-row {

Basics in React 75

display: flex;

line-height: 24px;

white-space: nowrap;

margin: 10px 0;

padding: 10px;

background: #ffffff;

border: 1px solid #e3e3e3;

}

.table-header > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

.table-row > span {

overflow: hidden;

text-overflow: ellipsis;

padding: 0 5px;

}

.button-inline {

border-width: 0;

background: transparent;

color: inherit;

text-align: inherit;

-webkit-font-smoothing: inherit;

padding: 0;

font-size: inherit;

cursor: pointer;

}

.button-active {

border-radius: 0;

border-bottom: 1px solid #38BB6C;

}

Now you can use the style in some of your components. Don’t forget to use React className instead
of class as HTML attribute.

First, apply it in your App ES6 class component.

Basics in React 76

src/App.js

class App extends Component {

...

render() {

const { searchTerm, list } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

</div>

<Table

list={list}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

}

}

Second, apply it in your Table functional stateless component.

src/App.js

const Table = ({ list, pattern, onDismiss }) =>

<div className="table">

{list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID} className="table-row">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button

Basics in React 77

onClick={() => onDismiss(item.objectID)}

className="button-inline"

>

Dismiss

</Button>

</div>

)}

</div>

Now you have styled your application and components with basic CSS. It should look quite decent.
As you know, JSX mixes up HTML and JavaScript. Now one could argue to add CSS in the mix as
well. That’s called inline style. You can define JavaScript objects and pass them to the style attribute
of an element.

Let’s keep the Table column width flexible by using inline style.

src/App.js

const Table = ({ list, pattern, onDismiss }) =>

<div className="table">

{list.filter(isSearched(pattern)).map(item =>

<div key={item.objectID} className="table-row">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<Button

onClick={() => onDismiss(item.objectID)}

className="button-inline"

>

Dismiss

</Button>

</div>

Basics in React 78

)}

</div>

The style is inlined now. You could define the style objects outside of your elements to make it
cleaner.

Code Playground

const largeColumn = {

width: '40%',

};

const midColumn = {

width: '30%',

};

const smallColumn = {

width: '10%',

};

After that you would use them in your columns: .

In general, you will find different opinions and solutions for style in React. You used pure CSS and
inline style now. That’s sufficient to get started.

I don’t want to be opinionated here, but I want to leave you some more options. You can read about
them and apply them on your own. But if you are new to React, I would recommend to stick to pure
CSS and inline style for now.

• styled-components⁸⁴
• CSS Modules⁸⁵

⁸⁴https://github.com/styled-components/styled-components
⁸⁵https://github.com/css-modules/css-modules

https://github.com/styled-components/styled-components
https://github.com/css-modules/css-modules
https://github.com/styled-components/styled-components
https://github.com/css-modules/css-modules

Basics in React 79

You have learned the basics to write your own React application! Let’s recap the last chapters:

• React
– use this.state and setState() to manage your internal component state
– pass functions or class methods to your element handler
– use forms and events in React to add interactions
– unidirectional data flow is an important concept in React
– embrace controlled components
– compose components with children and reusable components
– usage and implementation of ES6 class components and functional stateless components
– approaches to style your components

• ES6
– functions that are bound to a class are class methods
– destructuring of objects and arrays
– default parameters

• General
– higher-order functions

Again it makes sense to take a break. Internalize the learnings and apply them on your own. You
can experiment with the source code you have written so far. You can find the source code in the
official repository⁸⁶.

⁸⁶https://github.com/the-road-to-learn-react/hackernews-client/tree/5.2

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.2
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.2

Getting Real with an API
Now it’s time to get real with an API, because it can get boring to deal with sample data.

If you are not familiar with APIs, I encourage you to read my journey where I got to know APIs⁸⁷.

Do you know the Hacker News⁸⁸ platform? It’s a great news aggregator about tech topics. In this
book, you will use the Hacker News API to fetch trending stories from the platform. There is a
basic⁸⁹ and search⁹⁰ API to get data from the platform. The latter one makes sense in the case of this
application in order to search stories on Hacker News. You can visit the API specification to get an
understanding of the data structure.

⁸⁷https://www.robinwieruch.de/what-is-an-api-javascript/
⁸⁸https://news.ycombinator.com/
⁸⁹https://github.com/HackerNews/API
⁹⁰https://hn.algolia.com/api

https://www.robinwieruch.de/what-is-an-api-javascript/
https://news.ycombinator.com/
https://github.com/HackerNews/API
https://hn.algolia.com/api
https://www.robinwieruch.de/what-is-an-api-javascript/
https://news.ycombinator.com/
https://github.com/HackerNews/API
https://hn.algolia.com/api

Getting Real with an API 81

Lifecycle Methods

You will need to know about React lifecycle methods before you can start to fetch data in your
components by using an API. These methods are a hook into the lifecycle of a React component.
They can be used in ES6 class components, but not in functional stateless components.

Do you remember when a previous chapter taught you about JavaScript ES6 classes and how they are
used in React? Apart from the render() method, there are several methods that can be overridden
in a React ES6 class component. All of these are the lifecycle methods. Let’s dive into them:

You already know two lifecycle methods that can be used in an ES6 class component: constructor()
and render().

The constructor is only called when an instance of the component is created and inserted in the
DOM. The component gets instantiated. That process is called mounting of the component.

The render() method is called during the mount process too, but also when the component updates.
Each time when the state or the props of a component change, the render() method of the
component is called.

Now you know more about the two lifecycle methods and when they are called. You already used
them as well. But there are more of them.

The mounting of a component has two more lifecycle methods: getDerivedStateFromProps()

and componentDidMount(). The constructor is called first, getDerivedStateFromProps() gets called
before the render() method and componentDidMount() is called after the render() method.

Overall the mounting process has 4 lifecycle methods. They are invoked in the following order:

• constructor()
• getDerivedStateFromProps()
• render()
• componentDidMount()

But what about the update lifecycle of a component that happens when the state or the props change?
Overall it has 5 lifecycle methods in the following order:

• getDerivedStateFromProps()
• shouldComponentUpdate()
• render()
• getSnapshotBeforeUpdate()
• componentDidUpdate()

Last but not least there is the unmounting lifecycle. It has only one lifecycle method: componentWillUnmount().

Getting Real with an API 82

After all, you don’t need to know all of these lifecycle methods from the beginning. It can be
intimidating yet you will not use all of them. Even in a larger React application you will only use a
few of them apart from the constructor() and the render() method. Still, it is good to know that
each lifecycle method can be used for specific use cases:

• constructor(props) - It is called when the component gets initialized. You can set an initial
component state and bind class methods during that lifecycle method.

• static getDerivedStateFromProps(props, state) - It is called before the render() lifecycle
method, both on the initial mount and on the subsequent updates. It should return an object to
update the state, or null to update nothing. It exists for rare use cases where the state depends
on changes in props over time. It is important to know that this is a static method and it doesn’t
have access to the component instance.

• render() - This lifecycle method is mandatory and returns the elements as an output of the
component. The method should be pure and therefore shouldn’t modify the component state.
It gets an input as props and state and returns an element.

• componentDidMount() - It is called only once when the component mounted. That’s the
perfect time to do an asynchronous request to fetch data from an API. The fetched data would
get stored in the internal component state to display it in the render() lifecycle method.

• shouldComponentUpdate(nextProps, nextState) - It is always called when the component
updates due to state or props changes. You will use it in mature React applications for
performance optimizations. Depending on a boolean that you return from this lifecycle method,
the component and all its children will render or will not render on an update lifecycle. You
can prevent the render lifecycle method of a component.

• getSnapshotBeforeUpdate(prevProps, prevState) - This lifecycle method is invoked just
before the most recently rendered output is committed to the DOM. In rare use cases, the
component needs to capture information from the DOM before it is potentially changed. This
lifecycle method enables the component to do it. Another method (componentDidUpdate()) will
receive any value returned by getSnapshotBeforeUpdate() as a parameter.

• componentDidUpdate(prevProps, prevState, snapshot) - The lifecycle method is immedi-
ately invoked after updating occurs, but not for the initial render. You can use it as opportunity
to perform DOM operations or to perform further asynchronous requests. If your component
implements the getSnapshotBeforeUpdate() method, the value it returns will be received as
the snapshot parameter.

• componentWillUnmount() - It is called before you destroy your component. You can use the
lifecycle method to perform any clean up tasks.

The constructor() and render() lifecycle methods are already used by you. These are the
commonly used lifecycle methods for ES6 class components. Actually the render() method is
required, otherwise you wouldn’t return a component instance.

There is one more lifecycle method: componentDidCatch(error, info). It was introduced in React
16⁹¹ and is used to catch errors in components. For instance, displaying the sample list in your

⁹¹https://www.robinwieruch.de/what-is-new-in-react-16/

https://www.robinwieruch.de/what-is-new-in-react-16/
https://www.robinwieruch.de/what-is-new-in-react-16/
https://www.robinwieruch.de/what-is-new-in-react-16/

Getting Real with an API 83

application works just fine. But there could be a case when the list in the local state is set to null

by accident (e.g. when fetching the list from an external API, but the request failed and you set the
local state of the list to null). Afterward, it wouldn’t be possible to filter and map the list anymore,
because it is null and not an empty list. The component would be broken and the whole application
would fail. Now, by using componentDidCatch(), you can catch the error, store it in your local state,
and show an optional message to your application user that an error has happened.

Exercises:

• read more about lifecycle methods in React⁹²
• read more about the state related to lifecycle methods in React⁹³
• read more about error handling in components⁹⁴

⁹²https://reactjs.org/docs/react-component.html
⁹³https://reactjs.org/docs/state-and-lifecycle.html
⁹⁴https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html
https://reactjs.org/docs/react-component.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

Getting Real with an API 84

Fetching Data

Now you are prepared to fetch data from the Hacker News API. There was one lifecycle method
mentioned that can be used to fetch data: componentDidMount(). You will use the native fetch API
in JavaScript to perform the request.

Before we can use it, let’s set up the URL constants and default parameters to breakup the API
request into chunks.

src/App.js

import React, { Component } from 'react';

import './App.css';

const DEFAULT_QUERY = 'redux';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

...

In JavaScript ES6, you can use template strings⁹⁵ to concatenate strings. You will use it to concatenate
your URL for the API endpoint.

Code Playground

// ES6

const url = `${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${DEFAULT_QUERY}`;

// ES5

var url = PATH_BASE + PATH_SEARCH + '?' + PARAM_SEARCH + DEFAULT_QUERY;

console.log(url);

// output: https://hn.algolia.com/api/v1/search?query=redux

That will keep your URL composition flexible in the future.

But let’s get to the API request where you will use the url. The whole data fetch process will be
presented at once, but each step will be explained afterward.

⁹⁵https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

Getting Real with an API 85

src/App.js

...

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

setSearchTopStories(result) {

this.setState({ result });

}

componentDidMount() {

const { searchTerm } = this.state;

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

...

}

A lot of things happen in the code. I thought about breaking it into smaller pieces. Then again it
would be difficult to grasp the relations of each piece to each other. Let me explain each step in
detail.

First, you can remove the sample list of items, because you return a real list from the Hacker News
API. The sample data is not used anymore. The initial state of your component has an empty result
and default search term now. The same default search term is used in the input field of the Search
component and in your first request.

Getting Real with an API 86

Second, you use the componentDidMount() lifecycle method to fetch the data after the component
did mount. In the very first fetch, the default search term from the local state is used. It will fetch
“redux” related stories, because that is the default parameter.

Third, the native fetch API is used. The JavaScript ES6 template strings allow it to compose the URL
with the searchTerm. The URL is the argument for the native fetch API function. The response needs
to get transformed to a JSON data structure, which is a mandatory step in a native fetch function
when dealing with JSON data structures, and can finally be set as result in the internal component
state. In addition, the catch block is used in case of an error. If an error happens during the request,
the function will run into the catch block instead of the then block. In a later chapter of the book,
you will include the error handling.

Last but not least, don’t forget to bind your new component method in the constructor.

Now you can use the fetched data instead of the sample list of items. However, you have to be careful
again. The result is not only a list of data. It’s a complex object with meta information and a list of hits
which are in our case the stories⁹⁶. You can output the internal state with console.log(this.state);

in your render() method to visualize it.

In the next step, you will use the result to render it. But we will prevent it from rendering anything, so
we will return null, when there is no result in the first place. Once the request to the API succeeded,
the result is saved to the state and the App component will re-render with the updated state.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

if (!result) { return null; }

return (

<div className="page">

...

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

</div>

);

⁹⁶https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api
https://hn.algolia.com/api

Getting Real with an API 87

}

}

Let’s recap what happens during the component lifecycle. Your component gets initialized by the
constructor. After that, it renders for the first time. But you prevent it from displaying anything,
because the result in the local state is null. It is allowed to return null for a component in order to
display nothing. Then the componentDidMount() lifecycle method runs. In that method you fetch
the data from the Hacker News API asynchronously. Once the data arrives, it changes your internal
component state in setSearchTopStories(). Afterward, the update lifecycle comes into play because
the local state was updated. The component runs the render() method again, but this time with
populated result in your internal component state. The component and thus the Table component
with its content will be rendered.

You used the native fetch API that is supported by most browsers to perform an asynchronous
request to an API. The create-react-app configuration makes sure that it is supported in every
browser. There are third-party node packages that you can use to substitute the native fetch API:
superagent⁹⁷ and axios⁹⁸.

Keep in mind that the book builds up on the JavaScript’s shorthand notation for truthfulness checks.
In the previous example, if (!result) was used in favor of if (result === null). The same
applies for other cases throughout the book too. For instance, if (!list.length) is used in favor of
if (list.length === 0) or if (someString) is used in favor of if (someString !== ''). Read up
about the topic if you are not too familiar with it.

Back to your application: The list of hits should be visible now. However, there are two regression
bugs in the application now. First, the “Dismiss” button is broken. It doesn’t know about the complex
result object and still operates on the plain list from the local state when dismissing an item. Second,
when the list is displayed but you try to search for something else, the list gets filtered on the client-
side even though the initial search was made by searching for stories on the server-side. The perfect
behavior would be to fetch another result object from the API when using the Search component.
Both regression bugs will be fixed in the following chapters.

Exercises:

• read more about ES6 template strings⁹⁹
• read more about the native fetch API¹⁰⁰
• read more about data fetching in React¹⁰¹

⁹⁷https://github.com/visionmedia/superagent
⁹⁸https://github.com/mzabriskie/axios
⁹⁹https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

¹⁰⁰https://developer.mozilla.org/en/docs/Web/API/Fetch_API
¹⁰¹https://www.robinwieruch.de/react-fetching-data/

https://github.com/visionmedia/superagent
https://github.com/mzabriskie/axios
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://www.robinwieruch.de/react-fetching-data/
https://github.com/visionmedia/superagent
https://github.com/mzabriskie/axios
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://www.robinwieruch.de/react-fetching-data/

Getting Real with an API 88

ES6 Spread Operators

The “Dismiss” button doesn’t work because the onDismiss() method is not aware of the complex
result object. It only knows about a plain list in the local state. But it isn’t a plain list anymore. Let’s
change it to operate on the result object instead of the list itself.

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

...

});

}

But what happens in setState() now? Unfortunately the result is a complex object. The list of hits
is only one of multiple properties in the object. However, only the list gets updated, when an item
gets removed in the result object, while the other properties stay the same.

One approach could be to mutate the hits in the result object. I will demonstrate it, but we won’t do
it that way.

Code Playground

// don`t do this

this.state.result.hits = updatedHits;

React embraces immutable data structures. Thus you shouldn’t mutate an object (or mutate the state
directly). A better approach is to generate a new object based on the information you have. Thereby
none of the objects get altered. You will keep the immutable data structures. You will always return
a new object and never alter an object.

Therefore you can use JavaScript ES6 Object.assign(). It takes as first argument a target object. All
following arguments are source objects. These objects are merged into the target object. The target
object can be an empty object. It embraces immutability, because no source object gets mutated. It
would look similar to the following:

Code Playground

const updatedHits = { hits: updatedHits };

const updatedResult = Object.assign({}, this.state.result, updatedHits);

Latter objects will override former merged objects when they share the same property names. Now
let’s do it in the onDismiss() method:

Getting Real with an API 89

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

result: Object.assign({}, this.state.result, { hits: updatedHits })

});

}

That would already be the solution. But there is a simpler way in JavaScript ES6 and future JavaScript
releases. May I introduce the spread operator to you? It only consists of three dots: ... When it is
used, every value from an array or object gets copied to another array or object.

Let’s examine the ES6 array spread operator even though you don’t need it yet.

Code Playground

const userList = ['Robin', 'Andrew', 'Dan'];

const additionalUser = 'Jordan';

const allUsers = [...userList, additionalUser];

console.log(allUsers);

// output: ['Robin', 'Andrew', 'Dan', 'Jordan']

The allUsers variable is a completely new array. The other variables userList and additionalUser

stay the same. You can even merge two arrays that way into a new array.

Code Playground

const oldUsers = ['Robin', 'Andrew'];

const newUsers = ['Dan', 'Jordan'];

const allUsers = [...oldUsers, ...newUsers];

console.log(allUsers);

// output: ['Robin', 'Andrew', 'Dan', 'Jordan']

Now let’s have a look at the object spread operator. It is not JavaScript ES6. It is a proposal for a
next JavaScript version¹⁰² yet already used by the React community. That’s why create-react-app
incorporated the feature in the configuration.

Basically it is the same as the JavaScript ES6 array spread operator but with objects. It copies each
key value pair into a new object.

¹⁰²https://github.com/sebmarkbage/ecmascript-rest-spread

https://github.com/sebmarkbage/ecmascript-rest-spread
https://github.com/sebmarkbage/ecmascript-rest-spread
https://github.com/sebmarkbage/ecmascript-rest-spread

Getting Real with an API 90

Code Playground

const userNames = { firstname: 'Robin', lastname: 'Wieruch' };

const age = 28;

const user = { ...userNames, age };

console.log(user);

// output: { firstname: 'Robin', lastname: 'Wieruch', age: 28 }

Multiple objects can be spread like in the array spread example.

Code Playground

const userNames = { firstname: 'Robin', lastname: 'Wieruch' };

const userAge = { age: 28 };

const user = { ...userNames, ...userAge };

console.log(user);

// output: { firstname: 'Robin', lastname: 'Wieruch', age: 28 }

After all, it can be used to replace Object.assign().

src/App.js

onDismiss(id) {

const isNotId = item => item.objectID !== id;

const updatedHits = this.state.result.hits.filter(isNotId);

this.setState({

result: { ...this.state.result, hits: updatedHits }

});

}

Now the “Dismiss” button should work again, because the onDismiss() method is aware of the
complex result object and how to update it after dismissing an item from the list.

Exercises:

• read more about the ES6 Object.assign()¹⁰³
• read more about the ES6 array spread operator¹⁰⁴

– the object spread operator is briefly mentioned

¹⁰³https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
¹⁰⁴https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator

Getting Real with an API 91

Conditional Rendering

Conditional rendering is introduced pretty early in React applications. But not in the case of the
book, because there wasn’t such a use case yet. The conditional rendering happens when you want
to make a decision to render either one or another element. Sometimes it means to render an element
or nothing. After all, a conditional rendering simplest usage can be expressed by an if-else statement
in JSX.

The result object in the internal component state is null in the beginning. So far, the App
component returned no elements when the result hasn’t arrived from the API. That’s already a
conditional rendering, because you return earlier from the render() lifecycle method for a certain
condition. The App component either renders nothing or its elements.

But let’s go one step further. It makes more sense to wrap the Table component, which is the only
component that depends on the result, in an independent conditional rendering. Everything else
should be displayed, even though there is no result yet. You can simply use a ternary operator in
your JSX.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

>

Search

</Search>

</div>

{ result

? <Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

: null

}

Getting Real with an API 92

</div>

);

}

}

That’s your second option to express a conditional rendering. A third option is the logical && operator.
In JavaScript a true && 'Hello World' always evaluates to ‘Hello World’. A false && 'Hello World'

always evaluates to false.

Code Playground

const result = true && 'Hello World';

console.log(result);

// output: Hello World

const result = false && 'Hello World';

console.log(result);

// output: false

In React you can make use of that behavior. If the condition is true, the expression after the logical
&& operator will be the output. If the condition is false, React ignores and skips the expression. It is
applicable in the Table conditional rendering case, because it should return a Table or nothing.

src/App.js

{ result &&

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

}

These were a few approaches to use conditional rendering in React. You can read about more
alternatives in an exhaustive list of examples for conditional rendering approaches¹⁰⁵. Moreover
you will get to know their different use cases and when to apply them.

After all, you should be able to see the fetched data in your application. Everything except the Table
is displayed when the data fetching is pending. Once the request resolves the result and stores it into
the local state, the Table is displayed because the render() method runs again and the condition in
the conditional rendering resolves in favor of displaying the Table component.

¹⁰⁵https://www.robinwieruch.de/conditional-rendering-react/

https://www.robinwieruch.de/conditional-rendering-react/
https://www.robinwieruch.de/conditional-rendering-react/
https://www.robinwieruch.de/conditional-rendering-react/

Getting Real with an API 93

Exercises:

• read more about different ways for conditional renderings¹⁰⁶
• read more about React conditional rendering¹⁰⁷

¹⁰⁶https://www.robinwieruch.de/conditional-rendering-react/
¹⁰⁷https://reactjs.org/docs/conditional-rendering.html

https://www.robinwieruch.de/conditional-rendering-react/
https://reactjs.org/docs/conditional-rendering.html
https://www.robinwieruch.de/conditional-rendering-react/
https://reactjs.org/docs/conditional-rendering.html

Getting Real with an API 94

Client- or Server-side Search

When you use the Search component with its input field now, you will filter the list. That’s
happening on the client-side though. Now you are going to use the Hacker News API to search
on the server-side. Otherwise you would deal only with the first API response which you got on
componentDidMount() with the default search term parameter.

You can define an onSearchSubmit() method in your App component which fetches results from
the Hacker News API when executing a search in the Search component.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

onSearchSubmit() {

const { searchTerm } = this.state;

}

...

}

The onSearchSubmit() method should use the same functionality as the componentDidMount()

lifecycle method, but this time with a modified search term from the local state and not with the
initial default search term. Thus you can extract the functionality as a reusable class method.

Getting Real with an API 95

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

result: null,

searchTerm: DEFAULT_QUERY,

};

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

...

fetchSearchTopStories(searchTerm) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

componentDidMount() {

const { searchTerm } = this.state;

this.fetchSearchTopStories(searchTerm);

}

...

onSearchSubmit() {

const { searchTerm } = this.state;

this.fetchSearchTopStories(searchTerm);

}

...

}

Getting Real with an API 96

Now the Search component has to add an additional button. The button has to explicitly trigger the
search request. Otherwise you would fetch data from the Hacker News API every time when your
input field changes. But you want to do it explicitly in a onClick() handler.

As alternative you could debounce (delay) the onChange() function and spare the button, but it
would add more complexity at this time and maybe wouldn’t be the desired effect. Let’s keep it
simple without a debounce for now.

First, pass the onSearchSubmit() method to your Search component.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

<div className="interactions">

<Search

value={searchTerm}

onChange={this.onSearchChange}

onSubmit={this.onSearchSubmit}

>

Search

</Search>

</div>

{ result &&

<Table

list={result.hits}

pattern={searchTerm}

onDismiss={this.onDismiss}

/>

}

</div>

);

}

}

Second, introduce a button in your Search component. The button has the type="submit" and the
form uses its onSubmit attribute to pass the onSubmit()method. You can reuse the children property,
but this time it will be used as the content of the button.

Getting Real with an API 97

src/App.js

const Search = ({

value,

onChange,

onSubmit,

children

}) =>

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

/>

<button type="submit">

{children}

</button>

</form>

In the Table, you can remove the filter functionality, because there will be no client-side filter (search)
anymore. Don’t forget to remove the isSearched() function as well. It will not be used anymore.
The result comes directly from the Hacker News API now after you have clicked the “Search” button.

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

return (

<div className="page">

...

{ result &&

<Table

list={result.hits}

onDismiss={this.onDismiss}

/>

}

</div>

);

}

}

Getting Real with an API 98

...

const Table = ({ list, onDismiss }) =>

<div className="table">

{list.map(item =>

...

)}

</div>

When you try to search now, you will notice that the browser reloads. That’s a native browser
behavior for a submit callback in a HTML form. In React you will often come across the
preventDefault() event method to suppress the native browser behavior.

src/App.js

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.fetchSearchTopStories(searchTerm);

event.preventDefault();

}

Now you should be able to search different Hacker News stories. Perfect, you interact with a real
world API. There should be no client-side search anymore.

Exercises:

• read more about synthetic events in React¹⁰⁸
• experiment with the Hacker News API¹⁰⁹

¹⁰⁸https://reactjs.org/docs/events.html
¹⁰⁹https://hn.algolia.com/api

https://reactjs.org/docs/events.html
https://hn.algolia.com/api
https://reactjs.org/docs/events.html
https://hn.algolia.com/api

Getting Real with an API 99

Paginated Fetch

Did you have a closer look at the returned data structure yet? The Hacker News API¹¹⁰ returns more
than a list of hits. Precisely it returns a paginated list. The page property, which is 0 in the first
response, can be used to fetch more paginated sublists as result. You only need to pass the next page
with the same search term to the API.

Let’s extend the composable API constants so that it can deal with paginated data.

src/App.js

const DEFAULT_QUERY = 'redux';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

Now you can use the new constant to add the page parameter to your API request.

Code Playground

const url = `${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${DEFAULT_QUERY}&${PARAM_PAGE\

}`;

console.log(url);

// output: https://hn.algolia.com/api/v1/search?query=redux&page=

The fetchSearchTopStories() method will take the page as second argument. If you don’t
provide the second argument, it will fallback to the 0 page for the initial request. Thus the
componentDidMount() and onSearchSubmit() methods fetch the first page on the first request. Every
additional fetch should fetch the next page by providing the second argument.

src/App.js

class App extends Component {

...

fetchSearchTopStories(searchTerm, page = 0) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}`)

.then(response => response.json())

¹¹⁰https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Getting Real with an API 100

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

...

}

The page argument uses the JavaScript ES6 default parameter to introduce the fallback to page 0 in
case no defined page argument is provided for the function.

Now you can use the current page from the API response in fetchSearchTopStories(). You can
use this method in a button to fetch more stories on a onClick button handler. Let’s use the Button
to fetch more paginated data from the Hacker News API. You only need to define the onClick()

handler which takes the current search term and the next page (current page + 1).

src/App.js

class App extends Component {

...

render() {

const { searchTerm, result } = this.state;

const page = (result && result.page) || 0;

return (

<div className="page">

<div className="interactions">

...

{ result &&

<Table

list={result.hits}

onDismiss={this.onDismiss}

/>

}

<div className="interactions">

<Button onClick={() => this.fetchSearchTopStories(searchTerm, page + 1)}>

More

</Button>

</div>

</div>

);

}

}

Getting Real with an API 101

In addition, in your render() method you should make sure to default to page 0 when there is no
result yet. Remember that the render() method is called before the data is fetched asynchronously
in the componentDidMount() lifecycle method.

There is one step missing. You fetch the next page of data, but it will override your previous page of
data. It would be ideal to concatenate the old and new list of hits from the local state and new result
object. Let’s adjust the functionality to add the new data rather than to override it.

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

const oldHits = page !== 0

? this.state.result.hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

result: { hits: updatedHits, page }

});

}

A couple of things happen in the setSearchTopStories() method now. First, you get the hits and
page from the result.

Second, you have to check if there are already old hits. When the page is 0, it is a new search request
from componentDidMount() or onSearchSubmit(). The hits are empty. But when you click the “More”
button to fetch paginated data the page isn’t 0. It is the next page. The old hits are already stored in
your state and thus can be used.

Third, you don’t want to override the old hits. You can merge old and new hits from the recent API
request. The merge of both lists can be done with the JavaScript ES6 array spread operator.

Fourth, you set the merged hits and page in the local component state.

You can make one last adjustment. When you try the “More” button it only fetches a few list items.
The API URL can be extended to fetch more list items with each request. Again, you can add more
composable path constants.

Getting Real with an API 102

src/App.js

const DEFAULT_QUERY = 'redux';

const DEFAULT_HPP = '100';

const PATH_BASE = 'https://hn.algolia.com/api/v1';

const PATH_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

const PARAM_HPP = 'hitsPerPage=';

Now you can use the constants to extend the API URL.

src/App.js

fetchSearchTopStories(searchTerm, page = 0) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${page\

}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => error);

}

Afterward, the request to the Hacker News API fetches more list items in one request than before. As
you can see, a powerful API such as the Hacker News API gives you plenty of ways to experiment
with real world data. You should make use of it to make your endeavours when learning something
new more exciting. That’s how I learned about the empowerment that APIs provide¹¹¹ when learning
a new programming language or library.

Exercises:

• read more about ES6 default parameters¹¹²
• experiment with the Hacker News API parameters¹¹³

¹¹¹https://www.robinwieruch.de/what-is-an-api-javascript/
¹¹²https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
¹¹³https://hn.algolia.com/api

https://www.robinwieruch.de/what-is-an-api-javascript/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://hn.algolia.com/api
https://www.robinwieruch.de/what-is-an-api-javascript/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://hn.algolia.com/api

Getting Real with an API 103

Client Cache

Each search submit makes a request to the Hacker News API. You might search for “redux”, followed
by “react” and eventually “redux” again. In total it makes 3 requests. But you searched for “redux”
twice and both times it took a whole asynchronous roundtrip to fetch the data. In a client-sided
cache you would store each result. When a request to the API is made, it checks if a result is already
there. If it is there, the cache is used. Otherwise an API request is made to fetch the data.

In order to have a client cache for each result, you have to store multiple results rather than one
result in your internal component state. The results object will be a map with the search term as
key and the result as value. Each result from the API will be saved by search term (key).

At the moment, your result in the local state looks similar to the following:

Code Playground

result: {

hits: [...],

page: 2,

}

Imagine you have made two API requests. One for the search term “redux” and another one for
“react”. The results object should look like the following:

Code Playground

results: {

redux: {

hits: [...],

page: 2,

},

react: {

hits: [...],

page: 1,

},

...

}

Let’s implement a client-side cache with React setState(). First, rename the result object to
results in the initial component state. Second, define a temporary searchKey which is used to
store each result.

Getting Real with an API 104

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

};

...

}

...

}

The searchKey has to be set before each request is made. It reflects the searchTerm. You might
wonder: Why don’t we use the searchTerm in the first place? That’s a crucial part to understand
before continuing with the implementation. The searchTerm is a fluctuant variable, because it gets
changed every time you type into the Search input field. However, in the end you will need a non
fluctuant variable. It determines the recent submitted search term to the API and can be used to
retrieve the correct result from the map of results. It is a pointer to your current result in the cache
and thus can be used to display the current result in your render() method.

src/App.js

componentDidMount() {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

this.fetchSearchTopStories(searchTerm);

}

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

this.fetchSearchTopStories(searchTerm);

event.preventDefault();

}

Getting Real with an API 105

Now you have to adjust the functionality where the result is stored to the internal component state.
It should store each result by searchKey.

src/App.js

class App extends Component {

...

setSearchTopStories(result) {

const { hits, page } = result;

const { searchKey, results } = this.state;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

});

}

...

}

The searchKey will be used as the key to save the updated hits and page in a results map.

First, you have to retrieve the searchKey from the component state. Remember that the searchKey

gets set on componentDidMount() and onSearchSubmit().

Second, the old hits have to get merged with the new hits as before. But this time the old hits get
retrieved from the results map with the searchKey as key.

Third, a new result can be set in the results map in the state. Let’s examine the results object in
setState().

Getting Real with an API 106

src/App.js

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

The bottom part makes sure to store the updated result by searchKey in the results map. The value
is an object with a hits and page property. The searchKey is the search term. You already learned
the [searchKey]: ... syntax. It is an ES6 computed property name. It helps you to allocate values
dynamically in an object.

The upper part needs to spread all other results by searchKey in the state by using the object spread
operator. Otherwise you would lose all results that you have stored before.

Now you store all results by search term. That’s the first step to enable your cache. In the next step,
you can retrieve the result depending on the non fluctuant searchKey from your map of results.
That’s why you had to introduce the searchKey in the first place as non fluctuant variable. Otherwise
the retrieval would be broken when you would use the fluctuant searchTerm to retrieve the current
result, because this value might change when you would use the Search component.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

Getting Real with an API 107

return (

<div className="page">

<div className="interactions">

...

</div>

<Table

list={list}

onDismiss={this.onDismiss}

/>

<div className="interactions">

<Button onClick={() => this.fetchSearchTopStories(searchKey, page + 1)}>

More

</Button>

</div>

</div>

);

}

}

Since you default to an empty list when there is no result by searchKey, you can spare the
conditional rendering for the Table component now. Additionally you will need to pass the
searchKey rather than the searchTerm to the “More” button. Otherwise your paginated fetch depends
on the searchTerm value which is fluctuant. Moreover make sure to keep the fluctuant searchTerm
property for the input field in the “Search” component.

The search functionality should work again. It stores all results from the Hacker News API.

Additionally the onDismiss() method needs to get improved. It still deals with the result object.
Now it has to deal with multiple results.

src/App.js

onDismiss(id) {

const { searchKey, results } = this.state;

const { hits, page } = results[searchKey];

const isNotId = item => item.objectID !== id;

const updatedHits = hits.filter(isNotId);

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

}

Getting Real with an API 108

});

}

The “Dismiss” button should work again.

However, nothing stops the application from sending an API request on each search submit. Even
though there might be already a result, there is no check that prevents the request. Thus the cache
functionality is not complete yet. It caches the results, but it doesn’t make use of them. The last step
would be to prevent the API request when a result is available in the cache.

src/App.js

class App extends Component {

constructor(props) {

...

this.needsToSearchTopStories = this.needsToSearchTopStories.bind(this);

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onDismiss = this.onDismiss.bind(this);

}

needsToSearchTopStories(searchTerm) {

return !this.state.results[searchTerm];

}

...

onSearchSubmit(event) {

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

if (this.needsToSearchTopStories(searchTerm)) {

this.fetchSearchTopStories(searchTerm);

}

event.preventDefault();

}

...

Getting Real with an API 109

}

Now your client makes a request to the API only once although you search for a search term twice.
Even paginated data with several pages gets cached that way, because you always save the last page
for each result in the results map. Isn’t that a powerful approach to introduce caching to your
application? The Hacker News API provides you with everything you need to even cache paginated
data effectively.

Getting Real with an API 110

Error Handling

Everything is in place for your interactions with the Hacker News API. You even have introduced
an elegant way to cache your results from the API and make use of its paginated list functionality to
fetch an endless list of sublists of stories from the API. But there is one piece missing. Unfortunately it
is often missed when developing applications nowadays: error handling. It is too easy to implement
the happy path without worrying about the errors that can happen along the way.

In this chapter, you will introduce an efficient solution to add error handling for your application
in case of an erroneous API request. You have already learned about the necessary building blocks
in React to introduce error handling: local state and conditional rendering. Basically, the error is
only another state in React. When an error occurs, you will store it in the local state and display it
with a conditional rendering in your component. That’s it. Let’s implement it in the App component,
because it’s the component that is used to fetch the data from the Hacker News API in the first place.
First, you have to introduce the error in the local state. It is initialized as null, but will be set to the
error object in case of an error.

src/App.js

class App extends Component {

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

};

...

}

...

}

Second, you can use the catch block in your native fetch to store the error object in the local state by
using setState(). Every time the API request isn’t successful, the catch block would be executed.

Getting Real with an API 111

src/App.js

class App extends Component {

...

fetchSearchTopStories(searchTerm, page = 0) {

fetch(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(response => response.json())

.then(result => this.setSearchTopStories(result))

.catch(error => this.setState({ error }));

}

...

}

Third, you can retrieve the error object from your local state in the render() method and display a
message in case of an error by using React’s conditional rendering.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error

} = this.state;

...

if (error) {

return <p>Something went wrong.</p>;

}

return (

<div className="page">

...

Getting Real with an API 112

</div>

);

}

}

That’s it. If you want to test that your error handling is working, you can change the API URL to
something else that is non existent.

src/App.js

const PATH_BASE = 'https://hn.foo.bar.com/api/v1';

Afterward, you should get the error message instead of your application. It is up to you where
you want to place the conditional rendering for the error message. In this case, the whole app isn’t
displayed anymore. That wouldn’t be the best user experience. So what about displaying either the
Table component or the error message? The remaining application would still be visible in case of
an error.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error

} = this.state;

const page = (

results &&

results[searchKey] &&

results[searchKey].page

) || 0;

const list = (

results &&

results[searchKey] &&

results[searchKey].hits

) || [];

Getting Real with an API 113

return (

<div className="page">

<div className="interactions">

...

</div>

{ error

? <div className="interactions">

<p>Something went wrong.</p>

</div>

: <Table

list={list}

onDismiss={this.onDismiss}

/>

}

...

</div>

);

}

}

In the end, don’t forget to revert the URL for the API to the existent one.

src/App.js

const PATH_BASE = 'https://hn.algolia.com/api/v1';

Your application should still work, but this time with error handling in case the API request fails.

Exercises:

• read more about React’s Error Handling for Components¹¹⁴

¹¹⁴https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html
https://reactjs.org/blog/2017/07/26/error-handling-in-react-16.html

Getting Real with an API 114

Axios instead of Fetch

In one of the previous chapters, you have introduced the native fetch API to perform a request to
the Hacker News platform. The browser enables you to use this native fetch API. However, not all
browsers, especially older browsers, support it. In addition, once you start to test your application
in a headless browser environment (there is no browser, instead it is only mocked), there can be
issues regarding the fetch API. Such a headless browser environment can happen when writing and
executing tests for your application which don’t run in a real browser. There are a couple of ways
to make fetch work in older browsers (polyfills) and in tests (isomorphic-fetch¹¹⁵), but we won’t go
down this rabbit hole in this book.

An alternative way to solve it would be to substitute the native fetch API with a stable library
such as axios¹¹⁶. Axios is a library that solves only one problem, but it solves it with a high quality:
performing asynchronous requests to remote APIs. That’s why you will use it in this book. On a
concrete level, the chapter should show you how you can substitute a library (which is a native
API of the browser in this case) with another library. On an abstract level, it should show you how
you can always find a solution for the quirks (e.g. old browsers, headless browser tests) in web
development. So never stop to look for solutions if anything gets in your way.

Let’s see how the native fetch API can be substituted with axios. Actually everything said before
sounds more difficult than it is. First, you have to install axios on the command line:

Command Line

npm install --save axios

Second, you can import axios in your App component’s file:

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import './App.css';

...

And last but not least, you can use it instead of fetch(). Its usage looks almost identical to the
native fetch API. It takes the URL as argument and returns a promise. You don’t have to transform
the returned response to JSON anymore. Axios is doing it for you and wraps the result into a data

object in JavaScript. Thus make sure to adapt your code to the returned data structure.

¹¹⁵https://github.com/matthew-andrews/isomorphic-fetch
¹¹⁶https://github.com/axios/axios

https://github.com/matthew-andrews/isomorphic-fetch
https://github.com/axios/axios
https://github.com/matthew-andrews/isomorphic-fetch
https://github.com/axios/axios

Getting Real with an API 115

src/App.js

class App extends Component {

...

fetchSearchTopStories(searchTerm, page = 0) {

axios(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(result => this.setSearchTopStories(result.data))

.catch(error => this.setState({ error }));

}

...

}

That’s it for replacing fetch with axios in this chapter. In your code, you are calling axios() which
uses by default a HTTP GET request. You can make the GET request explicit by calling axios.get().
Also you can use another HTTP method such as HTTP POST with axios.post() instead. There
you can already see how axios is a powerful library to perform requests to remote APIs. I often
recommend to use it over the native fetch API when your API requests become complex or you
have to deal with web development quirks with promises. In addition, in a later chapter, you will
introduce testing in your application. Then you don’t need to worry anymore about a browser or
headless browser environment.

I want to introduce another improvement for the Hacker News request in the App component.
Imagine your component mounts when the page is rendered for the first time in the browser. In
componentDidMount() the component starts to make the request, but then, because your application
introduced some kind of navigation, you navigate away from this page to another page. Your App
component unmounts, but there is still a pending request from your componentDidMount() lifecycle
method. It will attempt to use this.setState() eventually in the then() or catch() block of the
promise. Perhaps then it’s the first time you will see the following warning on your command line
or in your browser’s developer output:

Command Line

Warning: Can only update a mounted or mounting component. This usually means you cal\

led setState, replaceState, or forceUpdate on an unmounted component. This is a no-o\

p.

You can deal with this issue by aborting the request when your component unmounts or preventing
to call this.setState() on an unmounted component. It’s a best practice in React, even though it’s
not followed by many developers, to preserve an clean application without any annoying warnings.

Getting Real with an API 116

However, the current promise API doesn’t implement aborting a request. Thus you need to help
yourself on this issue. This might also be the case why not many developers are following this
best practice. The following implementation seems more like a workaround than a sustainable
implementation. Because of that, you can decide on your own if you want to implement it to work
around the warning because of an unmounted component. Nevertheless, keep the warning in mind
in case it comes up in a later chapter of this book or in your own application one day. Then you
know how to deal with it.

Let’s start to work around it. You can introduce a class field which holds the lifecycle state of your
component. It can be initialized as false when the component initializes, changed to true when
the component mounted, but then again set to false when the component unmounted. This way,
you can keep track of your component’s lifecycle state. It has nothing to do with the local state
stored and modified with this.state and this.setState(), because you should be able to access it
directly on the component instance without relying on React’s local state management. Moreover,
it doesn’t lead to any re-rendering of the component when the class field is changed this way.

src/App.js

class App extends Component {

_isMounted = false;

constructor(props) {

...

}

...

componentDidMount() {

this._isMounted = true;

const { searchTerm } = this.state;

this.setState({ searchKey: searchTerm });

this.fetchSearchTopStories(searchTerm);

}

componentWillUnmount() {

this._isMounted = false;

}

...

}

Finally, you can use this knowledge not to abort the request itself but to avoid calling this.setState()

Getting Real with an API 117

on your component instance even though the component already unmounted. It will prevent the
mentioned warning.

src/App.js

class App extends Component {

...

fetchSearchTopStories(searchTerm, page = 0) {

axios(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(result => this._isMounted && this.setSearchTopStories(result.data))

.catch(error => this._isMounted && this.setState({ error }));

}

...

}

Overall the chapter has shown you how you can replace one library with another library in React.
If you run into any issues, you can use the vast library ecosystem in JavaScript to help yourself.
In addition, you have seen a way how you can avoid calling this.setState() in React on an
unmounted component. If you dig deeper into the axios library, you will find a way to cancel the
request in the first place too. It’s up to you to read up more about this topic.

Exercises:

• read more about why frameworks matter¹¹⁷
• learn more about an alternative React component syntax¹¹⁸

¹¹⁷https://www.robinwieruch.de/why-frameworks-matter/
¹¹⁸https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax

https://www.robinwieruch.de/why-frameworks-matter/
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://www.robinwieruch.de/why-frameworks-matter/
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax

Getting Real with an API 118

You have learned to interact with an API in React! Let’s recap the last chapters:

• React
– ES6 class component lifecycle methods for different use cases
– componentDidMount() for API interactions
– conditional renderings
– synthetic events on forms
– error handling
– aborting a remote API request

• ES6 and beyond
– template strings to compose strings
– spread operator for immutable data structures
– computed property names
– class fields

• General
– Hacker News API interaction
– native fetch browser API
– client- and server-side search
– pagination of data
– client-side caching
– axios as an alternative for the native fetch API

Again it makes sense to take a break. Internalize the learnings and apply them on your own. You
can experiment with the source code you have written so far. You can find the source code in the
official repository¹¹⁹.

¹¹⁹https://github.com/the-road-to-learn-react/hackernews-client/tree/5.3.1

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.3.1
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.3.1

Code Organization and Testing
The chapter will focus on important topics to keep your code maintainable in a scaling application.
You will learn about code organization to embrace best practices when structuring your folders and
files. Another aspect you will learn is testing, which is important to keep your code robust. Last, you
are going to learn about a useful tool for debugging your React applications. Most of the chapter
will take a step back from the practical application and explain a couple of these topics for you.

Code Organization and Testing 120

ES6 Modules: Import and Export

In JavaScript ES6 you can import and export functionalities from modules. These functionalities can
be functions, classes, components, constants and others. Basically everything that you can assign to
a variable. The modules can be single files or whole folders with one index file as entry point.

In the beginning of the book, after you have bootstrapped your application with create-react-
app, you already had several import and export statements across your initial files. Now it is the
appropriate time to explain these.

The import and export statements help you to share code across multiple files. Before there were
already several solutions for this in the JavaScript environment. It was a mess, because you would
want to follow one standardized way rather than having several approaches for the same thing. Now
it is a native behavior since JavaScript ES6.

Additionally these statements embrace code splitting. You distribute your code across multiple files
to keep it reusable and maintainable. The former is true because you can import the piece of code in
multiple files. The latter is true because you have one single source where you maintain the piece
of code.

Last but not least, it helps you to think about code encapsulation. Not every functionality needs
to get exported from a file. Some of these functionalities should only be used in the file where
they have been defined. The exports of a file are basically the public API to the file. Only the
exported functionalities are available to be reused somewhere else. It follows the best practice of
encapsulation.

But let’s get practical. How do these import and export statements work? The following examples
showcase the statements by sharing one or multiple variables across two files. In the end, the
approach can scale to multiple files and could share more than simple variables.

You can export one or multiple variables. It is called a named export.

Code Playground: file1.js

const firstname = 'Robin';

const lastname = 'Wieruch';

export { firstname, lastname };

And import them in another file with a relative path to the first file.

Code Organization and Testing 121

Code Playground: file2.js

import { firstname, lastname } from './file1.js';

console.log(firstname);

// output: Robin

You can also import all exported variables from another file as one object.

Code Playground: file2.js

import * as person from './file1.js';

console.log(person.firstname);

// output: Robin

Imports can have an alias. It can happen that you import functionalities from multiple files that have
the same named export. That’s why you can use an alias.

Code Playground: file2.js

import { firstname as username } from './file1.js';

console.log(username);

// output: Robin

Last but not least there exists the default statement. It can be used for a few use cases:

• to export and import a single functionality
• to highlight the main functionality of the exported API of a module
• to have a fallback import functionality

Code Playground: file1.js

const robin = {

firstname: 'Robin',

lastname: 'Wieruch',

};

export default robin;

You can leave out the curly braces for the import to import the default export.

Code Organization and Testing 122

Code Playground: file2.js

import developer from './file1.js';

console.log(developer);

// output: { firstname: 'Robin', lastname: 'Wieruch' }

Furthermore, the import name can differ from the exported default name. You can also use it in
conjunction with the named export and import statements.

Code Playground: file1.js

const firstname = 'Robin';

const lastname = 'Wieruch';

const person = {

firstname,

lastname,

};

export {

firstname,

lastname,

};

export default person;

And import the default or the named exports in another file.

Code Playground: file2.js

import developer, { firstname, lastname } from './file1.js';

console.log(developer);

// output: { firstname: 'Robin', lastname: 'Wieruch' }

console.log(firstname, lastname);

// output: Robin Wieruch

You can also spare additional lines and export the variables directly for named exports.

Code Organization and Testing 123

Code Playground: file1.js

export const firstname = 'Robin';

export const lastname = 'Wieruch';

These are the main functionalities for ES6 modules. They help you to organize your code, to maintain
your code and to design reusable module APIs. You can also export and import functionalities to
test them. You will do that in one of the following chapters.

Exercises:

• read more about ES6 import¹²⁰
• read more about ES6 export¹²¹

¹²⁰https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
¹²¹https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export

Code Organization and Testing 124

Code Organization with ES6 Modules

You might wonder: Why didn’t we follow the best practices of code splitting for the src/App.js file?
In the file we already have multiple components which could be defined in their own files/folders
(modules). For the sake of learning React, it is practical to keep these things at one place. But
once your React application grows, you should consider to split up these components into multiple
modules. Only that way your application scales.

In the following, I will propose several module structures you could apply. I would recommend to
apply them as an exercise at the end of the book. To keep the book itself simple, I will not perform
the code splitting and will continue the following chapters with the src/App.js file.

One possible module structure could be:

Folder Structure

src/

index.js

index.css

App.js

App.test.js

App.css

Button.js

Button.test.js

Button.css

Table.js

Table.test.js

Table.css

Search.js

Search.test.js

Search.css

It separates the components into their own files, but it doesn’t look too promising. You can see a lot
of naming duplications and only the file extension differs. Another module structure could be:

Code Organization and Testing 125

Folder Structure

src/

index.js

index.css

App/

index.js

test.js

index.css

Button/

index.js

test.js

index.css

Table/

index.js

test.js

index.css

Search/

index.js

test.js

index.css

It looks cleaner than before. The index naming of a file describes it as an entry point file to the folder.
It is just a common naming convention, but you can use your own naming as well. In this module
structure, a component is defined by its component declaration in the JavasScript file, but also by
its style and tests.

Another step could be extracting the constant variables from the App component. These constants
were used to compose the Hacker News API URL.

Folder Structure

src/

index.js

index.css

constants/

index.js

components/

App/

index.js

test.js

index.css

Button/

index.js

test.js

Code Organization and Testing 126

index.css

...

Naturally the modules would split up into src/constants/ and src/components/. Now the src/con-
stants/index.js file could look like the following:

Code Playground: src/constants/index.js

export const DEFAULT_QUERY = 'redux';

export const DEFAULT_HPP = '100';

export const PATH_BASE = 'https://hn.algolia.com/api/v1';

export const PATH_SEARCH = '/search';

export const PARAM_SEARCH = 'query=';

export const PARAM_PAGE = 'page=';

export const PARAM_HPP = 'hitsPerPage=';

The App/index.js file could import these variables in order to use them.

Code Playground: src/components/App/index.js

import {

DEFAULT_QUERY,

DEFAULT_HPP,

PATH_BASE,

PATH_SEARCH,

PARAM_SEARCH,

PARAM_PAGE,

PARAM_HPP,

} from '../../constants/index.js';

...

When you use the index.js naming convention, you can omit the filename from the relative path.

Code Playground: src/components/App/index.js

import {

DEFAULT_QUERY,

DEFAULT_HPP,

PATH_BASE,

PATH_SEARCH,

PARAM_SEARCH,

PARAM_PAGE,

PARAM_HPP,

} from '../../constants';

Code Organization and Testing 127

...

But what’s behind the index.js file naming? The convention was introduced in the node.js world.
The index file is the entry point to a module. It describes the public API to the module. External
modules are only allowed to use the index.js file to import shared code from the module. Consider
the following made up module structure to demonstrate it:

Folder Structure

src/

index.js

App/

index.js

Buttons/

index.js

SubmitButton.js

SaveButton.js

CancelButton.js

The Buttons/ folder has multiple button components defined in its distinct files. Each file can export

default the specific component making it available to Buttons/index.js. The Buttons/index.js file
imports all different button representations and exports them as public module API.

Code Playground: src/Buttons/index.js

import SubmitButton from './SubmitButton';

import SaveButton from './SaveButton';

import CancelButton from './CancelButton';

export {

SubmitButton,

SaveButton,

CancelButton,

};

Now the src/App/index.js can import the buttons from the public module API located in the index.js
file.

Code Organization and Testing 128

Code Playground: src/App/index.js

import {

SubmitButton,

SaveButton,

CancelButton

} from '../Buttons';

By going with this constraint, it would be a bad practice to reach into other files than the index.js
in the module. It would break the rules of encapsulation.

Code Playground: src/App/index.js

// bad practice, don't do it

import SubmitButton from '../Buttons/SubmitButton';

Now you know how you could refactor your source code in modules with the constraints of
encapsulation. As I said, for the sake of keeping the book simple I will not apply these changes.
But you should do the refactoring when you finished reading the book.

Exercises:

• refactor your src/App.js file into multiple component modules when you finished the book

Code Organization and Testing 129

Snapshot Tests with Jest

The book will not dive deeply into the topic of testing, but it shouldn’t be unmentioned. Testing your
code in programming is essential and should be seen as mandatory. You want to keep the quality of
your code high and an assurance that everything works.

Perhaps you have heard about the testing pyramid. There are end-to-end tests, integration tests and
unit tests. If you are not familiar with those, the book gives you a quick and basic overview. A unit
test is used to test an isolated and small block of code. It can be a single function that is tested by an
unit test. However, sometimes the units work well in isolation yet don’t work in combination with
other units. They need to be tested as a group of units. That’s where integration tests can help out by
covering whether units work well together. Last but not least, an end-to-end test is the simulation
of a real user scenario. It could be an automated setup in a browser simulating the login flow of an
user in a web application. While unit tests are fast and easy to write and to maintain, end-to-end
tests are the opposite of this spectrum.

How many tests do I need of each type? You want to have many unit tests to cover your isolated
functions. After that, you can have several integration tests to cover that the most important
functions work in combination as expected. Last but not least, you might want to have only a few
end-to-end tests to simulate critical scenarios in your web application. That’s it for the general
excursion in the world of testing.

So how do you apply this knowledge in testing your React application? The foundation for testing
in React are component tests which can be generalized as unit tests and a part of it as snapshot
tests. You will conduct unit tests for your components in the next chapter by using a library called
Enzyme. In this section of the chapter, you will focus on another kind of tests: snapshot tests. That’s
were Jest comes into play.

Jest¹²² is a JavaScript testing framework that is used at Facebook. In the React community, it is used
for React component tests. Fortunately create-react-app already comes with Jest, so you don’t need
to worry about setting it up.

Let’s start to test your first components. Before you can do that, you have to export the components,
which you are going to test, from your src/App.js file. Afterward you can test them in a different
file. You have learned about this in the code organization chapter.

¹²²https://jestjs.io/

https://jestjs.io/
https://jestjs.io/

Code Organization and Testing 130

src/App.js

...

class App extends Component {

...

}

...

export default App;

export {

Button,

Search,

Table,

};

In your App.test.js file, you will find a first test that came with create-react-app. It verifies that the
App component would render without any errors.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import App from './App';

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

ReactDOM.unmountComponentAtNode(div);

});

The “it”-block describes one test case. It comes with a test description and when you test it, it can
either succeed or fail. Furthermore, you could wrap it into a “describe”-block that defines your test
suite. A test suite could include a bunch of the “it”-blocks for one specific component. You will see
those “describe”-blocks later on. Both blocks are used to separate and organize your test cases.

Note that the it function is acknowledged in the JavaScript community as the function where you
run a single test. However, in Jest it is often found as an alias test function.

You can run your test cases by using the interactive create-react-app test script on the command
line. You will get the output for all test cases on your command line interface.

Code Organization and Testing 131

Command Line

npm test

Now Jest enables you to write snapshot tests. These tests make a snapshot of your rendered
component and run this snapshot against future snapshots. When a future snapshot changes, you
will get notified in the test. You can either accept the snapshot change, because you changed
the component implementation on purpose, or deny the change and investigate for the error. It
complements unit tests very well, because you only test the diffs of the rendered output. It doesn’t
add big maintenance costs, because you can simply accept changed snapshots when you changed
something on purpose for the rendered output in your component.

Jest stores the snapshots in a folder. Only that way it can validate the diff against a future snapshot.
Additionally, the snapshots can be shared across teams by having them in one folder.

Before writing your first snapshot test with Jest, you have to install an utility library.

Command Line

npm install --save-dev react-test-renderer

Now you can extend the App component test with your first snapshot test. First, import the new
functionality from the node package and wrap your previous “it”-block for the App component into
a descriptive “describe”-block. In this case, the test suite is only for the App component.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App from './App';

describe('App', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

ReactDOM.unmountComponentAtNode(div);

});

});

Now you can implement your first snapshot test by using a “test”-block.

Code Organization and Testing 132

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App from './App';

describe('App', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<App />, div);

ReactDOM.unmountComponentAtNode(div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

<App />

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Run your tests again and see how the tests either succeed or fail. They should succeed. Once you
change the output of the render block in your App component, the snapshot test should fail. Then
you can decide to update the snapshot or investigate in your App component.

Basically the renderer.create() function creates a snapshot of your App component. It renders it
virtually and stores the DOM into a snapshot. Afterward, the snapshot is expected to match the
previous snapshot from when you ran your snapshot tests the last time. This way, you can assure
that your DOM stays the same and doesn’t change anything by accident.

Let’s add more tests for our independent components. First, the Search component:

Code Organization and Testing 133

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import App, { Search } from './App';

...

describe('Search', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<Search>Search</Search>, div);

ReactDOM.unmountComponentAtNode(div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

<Search>Search</Search>

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

The Search component has two tests similar to the App component. The first test simply renders
the Search component to the DOM and verifies that there is no error during the rendering process.
If there would be an error, the test would break even though there isn’t any assertion (e.g. expect,
match, equal) in the test block. The second snapshot test is used to store a snapshot of the rendered
component and to run it against a previous snapshot. It fails when the snapshot has changed.

Second, you can test the Button component whereas the same test rules as in the Search component
apply.

Code Organization and Testing 134

src/App.test.js

...

import App, { Search, Button } from './App';

...

describe('Button', () => {

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<Button>Give Me More</Button>, div);

ReactDOM.unmountComponentAtNode(div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

<Button>Give Me More</Button>

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Last but not least, the Table component that you can pass a bunch of initial props to render it with
a sample list.

src/App.test.js

...

import App, { Search, Button, Table } from './App';

...

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

};

Code Organization and Testing 135

it('renders without crashing', () => {

const div = document.createElement('div');

ReactDOM.render(<Table { ...props } />, div);

});

test('has a valid snapshot', () => {

const component = renderer.create(

<Table { ...props } />

);

const tree = component.toJSON();

expect(tree).toMatchSnapshot();

});

});

Snapshot tests usually stay pretty basic. You only want to cover that the component doesn’t change
its output. Once it changes the output, you have to decide if you accept the changes. Otherwise you
have to fix the component when the output is not the desired output.

Exercises:

• see how a snapshot test fails once you change your component’s return value in the render()

method
– either accept or deny the snapshot change

• keep your snapshots tests up to date when the implementation of components change in next
chapters

• read more about Jest in React¹²³

¹²³https://jestjs.io/docs/en/tutorial-react

https://jestjs.io/docs/en/tutorial-react
https://jestjs.io/docs/en/tutorial-react

Code Organization and Testing 136

Unit Tests with Enzyme

Enzyme¹²⁴ is a testing utility by Airbnb to assert, manipulate and traverse your React components.
You can use it to conduct unit tests to complement your snapshot tests in React.

Let’s see how you can use Enzyme. First you have to install it since it doesn’t come by default with
create-react-app. It comes also with an extension to use it in React.

Command Line

npm install --save-dev enzyme react-addons-test-utils enzyme-adapter-react-16

Second, you need to include it in your test setup and initialize its Adapter for using it in React.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import Enzyme from 'enzyme';

import Adapter from 'enzyme-adapter-react-16';

import App, { Search, Button, Table } from './App';

Enzyme.configure({ adapter: new Adapter() });

Now you can write your first unit test in the Table “describe”-block. You will use shallow() to
render your component and assert that the Table has two items, because you pass it two list items.
The assertion simply checks if the element has two elements with the class table-row.

src/App.test.js

import React from 'react';

import ReactDOM from 'react-dom';

import renderer from 'react-test-renderer';

import Enzyme, { shallow } from 'enzyme';

import Adapter from 'enzyme-adapter-react-16';

import App, { Search, Button, Table } from './App';

...

describe('Table', () => {

const props = {

¹²⁴https://github.com/airbnb/enzyme

https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme

Code Organization and Testing 137

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

};

...

it('shows two items in list', () => {

const element = shallow(

<Table { ...props } />

);

expect(element.find('.table-row').length).toBe(2);

});

});

Shallow renders the component without its child components. That way, you can make the test very
dedicated to one component.

Enzyme has overall three rendering mechanisms in its API. You already know shallow(), but there
also exist mount() and render(). Both instantiate instances of the parent component and all child
components. Additionally mount() gives you access to the component lifecycle methods. But when
to use which render mechanism? Here some rules of thumb:

• Always begin with a shallow test
• If componentDidMount() or componentDidUpdate() should be tested, use mount()

• If you want to test component lifecycle and children behavior, use mount()

• If you want to test a component’s children rendering with less overhead than mount() and you
are not interested in lifecycle methods, use render()

You could continue to unit test your components. But make sure to keep the tests simple and
maintainable. Otherwise you will have to refactor them once you change your components. That’s
why Facebook introduced snapshot tests with Jest in the first place.

Exercises:

• write a unit test with Enzyme for your Button component
• keep your unit tests up to date during the following chapters
• read more about Enzyme and its rendering API¹²⁵
• read more about testing React applications¹²⁶

¹²⁵https://github.com/airbnb/enzyme
¹²⁶https://www.robinwieruch.de/react-testing-tutorial

https://github.com/airbnb/enzyme
https://www.robinwieruch.de/react-testing-tutorial
https://github.com/airbnb/enzyme
https://www.robinwieruch.de/react-testing-tutorial

Code Organization and Testing 138

Component Interface with PropTypes

You may know TypeScript¹²⁷ or Flow¹²⁸ to introduce a type interface to JavaScript. A typed language
is less error prone, because the code gets validated based on its program text. Editors and other
utilities can catch these errors before the program runs. It makes your program more robust.

In the book, you will not introduce Flow or TypeScript, but another neat way to check your types
in components. React comes with a built-in type checker to prevent bugs. You can use PropTypes
to describe your component interface. All the props that get passed from a parent component to a
child component get validated based on the PropTypes interface assigned to the child component.

This section of the chapter will show you how you can make all your components type safe with
PropTypes. I will omit the changes for the following chapters, because they add unnecessary code
refactorings. But you should keep and update them along the way to keep your components interface
type safe.

First, you have to install a separate package for React.

Command Line

npm install prop-types

Now, you can import the PropTypes.

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import PropTypes from 'prop-types';

Let’s start to assign a props interface to the components:

src/App.js

const Button = ({

onClick,

className = '',

children,

}) =>

<button

onClick={onClick}

className={className}

type="button"

>

¹²⁷https://www.typescriptlang.org/
¹²⁸https://flowtype.org/

https://www.typescriptlang.org/
https://flowtype.org/
https://www.typescriptlang.org/
https://flowtype.org/

Code Organization and Testing 139

{children}

</button>

Button.propTypes = {

onClick: PropTypes.func,

className: PropTypes.string,

children: PropTypes.node,

};

Basically that’s it. You take every argument from the function signature and assign a PropType to
it. The basic PropTypes for primitives and complex objects are:

• PropTypes.array
• PropTypes.bool
• PropTypes.func
• PropTypes.number
• PropTypes.object
• PropTypes.string

Additionally you have two more PropTypes to define a renderable fragment (node), e.g. a string, and
a React element:

• PropTypes.node
• PropTypes.element

You already used the node PropType for the Button component. Overall there are more PropType
definitions that you can read up on in the official React documentation.

At the moment all of the defined PropTypes for the Button are optional. The parameters can be null
or undefined. But for several props you want to enforce that they are defined. You can make it a
requirement that these props are passed to the component.

src/App.js

Button.propTypes = {

onClick: PropTypes.func.isRequired,

className: PropTypes.string,

children: PropTypes.node.isRequired,

};

The className is not required, because it can default to an empty string. Next you will define a
PropType interface for the Table component:

Code Organization and Testing 140

src/App.js

Table.propTypes = {

list: PropTypes.array.isRequired,

onDismiss: PropTypes.func.isRequired,

};

You can define the content of an array PropType more explicitly:

src/App.js

Table.propTypes = {

list: PropTypes.arrayOf(

PropTypes.shape({

objectID: PropTypes.string.isRequired,

author: PropTypes.string,

url: PropTypes.string,

num_comments: PropTypes.number,

points: PropTypes.number,

})

).isRequired,

onDismiss: PropTypes.func.isRequired,

};

Only the objectID is required, because you know that some of your code depends on it. The other
properties are only displayed, thus they are not necessarily required. Moreover you cannot be sure
that the Hacker News API has always a defined property for each object in the array.

That’s it for PropTypes. But there is one more aspect. You can define default props in your
component. Let’s take again the Button component. The className property has an ES6 default
parameter in the component signature.

src/App.js

const Button = ({

onClick,

className = '',

children

}) =>

...

You could replace it with the internal React default prop:

Code Organization and Testing 141

src/App.js

const Button = ({

onClick,

className,

children

}) =>

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

Button.defaultProps = {

className: '',

};

Same as the ES6 default parameter, the default prop ensures that the property is set to a default value
when the parent component didn’t specify it. The PropType type check happens after the default
prop is evaluated.

If you run your tests again, you might see PropType errors for your components on your command
line. It can happen because you didn’t define all props for your components in the tests that are
defined as required in your PropType definition. The tests themselves all pass correctly though. You
can pass all required props to the components in your tests to avoid these errors.

Exercises:

• define the PropType interface for the Search component
• add and update the PropType interfaces when you add and update components in the next

chapters
• read more about React PropTypes¹²⁹

¹²⁹https://reactjs.org/docs/typechecking-with-proptypes.html

https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html

Code Organization and Testing 142

Debugging with React Developer Tools

This last section presents to you a helpful tool, generally used to inspect and debug React
applications. React Developer Tools¹³⁰ lets you inspect the React components hierarchy, props and
state. It comes as a browser extension (for Chrome and Firefox) and as a standalone app (that works
with other environments). Once installed, the extension icon will light up on the websites using
React. On such pages, you will see a tab called “React” in your browser’s developer tools.

Let’s try it on your Hacker News application. On most browsers, a quick way to bring the dev tools
up is to right-click on the page and than hit “Inspect”. Do it when your application is loaded, then
click on the “React” tab. You should see its elements hierarchy, being <App> the root element. If you
expand it, you will find instances of your <Search>, <Table> and <Button> components, as well.

The extension shows on the side pane the component’s state and props for the selected element. For
instance, if you click on <App>, you will see that it has no props, but it already has a state. A very
straightforward debugging technique is to monitor your application’s state changing because of the
user interaction.

First, you would like to check the “Highlight Updates” option (usually above the elements tree).
Second, you can type a different search term in the application’s input field. As you will see, only
searchTerm will be changed in the component’s state. You already knew that would happen, but
now you can actually see it working as planned.

Finally, you can press the “Search” button. The searchKey state will immediately be changed for the
same value as searchTerm and the response object will be added to results a few seconds later. The
asynchronous nature of your code is now visible to your eyes.

Last but not least, if you right-click on any element, a dropdown menu will show several useful
options to you. For instance, you could copy the element’s props or name, find the corresponding
DOM node or jump to the application’s source code in the browser. This last option is very useful
for inserting breakpoints and debug your JavaScript functions.

Exercises:

• install the React Developer Tools¹³¹ extension on your favorite browser
– run your Hacker News Clone application and inspect it using the extension
– experiment with state and props changes
– watch what happens when you trigger an asynchronous request
– perform several requests, including repeated ones. Watch the cache mechanism working

• read more about how to debug your JavaScript functions in the browser¹³²

¹³⁰https://github.com/facebook/react-devtools
¹³¹https://github.com/facebook/react-devtools
¹³²https://developers.google.com/web/tools/chrome-devtools/javascript/

https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://developers.google.com/web/tools/chrome-devtools/javascript/
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://developers.google.com/web/tools/chrome-devtools/javascript/

Code Organization and Testing 143

You have learned how to organize your code and how to test it! Let’s recap the last chapters:

• React
– PropTypes let you define type checks for components
– Jest allows you to write snapshot tests for your components
– Enzyme allows you to write unit tests for your components
– React Developer Tools is a helpful debugging tool

• ES6
– import and export statements help you to organize your code

• General
– code organization allows you to scale your application with best practices

You can find the source code in the official repository¹³³.

¹³³https://github.com/the-road-to-learn-react/hackernews-client/tree/5.4

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.4
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.4

Advanced React Components
The chapter will focus on the implementation of advanced React components. You will learn about
higher-order components and how to implement them. In addition, you will dive into more advanced
topics in React and implement complex interactions with it.

Advanced React Components 145

Ref a DOM Element

Sometimes you need to interact with your DOM nodes in React. The ref attribute gives you access
to a node in your elements. Usually that is an anti pattern in React, because you should use its
declarative way of doing things and its unidirectional data flow. You have learned about it when
you have introduced your first search input field. But there are certain cases where you need access
to the DOM node. The official documentation mentions three use cases:

• to use the DOM API (focus, media playback etc.)
• to invoke imperative DOM node animations
• to integrate with a third-party library that needs the DOM node (e.g. D3.js¹³⁴)

Let’s do it by example with the Search component. When the application renders the first time, the
input field should be focused. That’s one use case where you would need access to the DOM API.
This chapter will show you how it works, but since it is not very useful for the application itself, we
will omit the changes after the chapter. You can keep it for your own application though.

In general, you can use the ref attribute in both functional stateless components and ES6 class
components. In the example of the focus use case, you will need a lifecycle method. That’s why the
approach is first showcased by using the ref attribute with an ES6 class component.

The initial step is to refactor the functional stateless component to an ES6 class component.

src/App.js

class Search extends Component {

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

/>

<button type="submit">

{children}

¹³⁴https://d3js.org/

https://d3js.org/
https://d3js.org/

Advanced React Components 146

</button>

</form>

);

}

}

The this object of an ES6 class component helps us to reference the DOM element with the ref

attribute.

src/App.js

class Search extends Component {

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={el => this.input = el}

/>

<button type="submit">

{children}

</button>

</form>

);

}

}

Now you can focus the input field when the component mounted by using the this object, the
appropriate lifecycle method, and the DOM API.

Advanced React Components 147

src/App.js

class Search extends Component {

componentDidMount() {

if (this.input) {

this.input.focus();

}

}

render() {

const {

value,

onChange,

onSubmit,

children

} = this.props;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={el => this.input = el}

/>

<button type="submit">

{children}

</button>

</form>

);

}

}

The input field should be focused when the application renders. That’s basically it for using the ref

attribute.

But how would you get access to the ref in a functional stateless component without the this object?
The following functional stateless component demonstrates it.

Advanced React Components 148

src/App.js

const Search = ({

value,

onChange,

onSubmit,

children

}) => {

let input;

return (

<form onSubmit={onSubmit}>

<input

type="text"

value={value}

onChange={onChange}

ref={el => this.input = el}

/>

<button type="submit">

{children}

</button>

</form>

);

}

Now you would be able to access the input DOM element. In the example of the focus use case it
wouldn’t help you, because you have no lifecycle method in a functional stateless component to
trigger the focus. But in the future you might come across other use cases where it can make sense
to use a functional stateless component with the ref attribute.

Exercises

• read more about the usage of the ref attribute in React¹³⁵
• read more about the ref attribute in general in React¹³⁶

¹³⁵https://www.robinwieruch.de/react-ref-attribute-dom-node/
¹³⁶https://reactjs.org/docs/refs-and-the-dom.html

https://www.robinwieruch.de/react-ref-attribute-dom-node/
https://reactjs.org/docs/refs-and-the-dom.html
https://www.robinwieruch.de/react-ref-attribute-dom-node/
https://reactjs.org/docs/refs-and-the-dom.html

Advanced React Components 149

Loading …

Now let’s get back to the application. You might want to show a loading indicator when you submit
a search request to the Hacker News API. The request is asynchronous and you should show your
user some feedback that something is about to happen. Let’s define a reusable Loading component
in your src/App.js file.

src/App.js

const Loading = () =>

<div>Loading ...</div>

Now you will need a property to store the loading state. Based on the loading state you can decide
to show the Loading component later on.

src/App.js

class App extends Component {

_isMounted = false;

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

};

...

}

...

}

The initial value of that isLoading property is false. You don’t load anything before the App
component is mounted.

When you make the request, you set a loading state to true. Eventually the request will succeed and
you can set the loading state to false.

Advanced React Components 150

src/App.js

class App extends Component {

...

setSearchTopStories(result) {

...

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

});

}

fetchSearchTopStories(searchTerm, page = 0) {

this.setState({ isLoading: true });

axios(`${PATH_BASE}${PATH_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${pa\

ge}&${PARAM_HPP}${DEFAULT_HPP}`)

.then(result => this._isMounted && this.setSearchTopStories(result.data))

.catch(error => this._isMounted && this.setState({ error }));

}

...

}

In the last step, you will use the Loading component in your App. A conditional rendering based
on the loading state will decide whether you show a Loading component or the Button component.
The latter one is your button to fetch more data.

Advanced React Components 151

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading

} = this.state;

...

return (

<div className="page">

...

<div className="interactions">

{ isLoading

? <Loading />

: <Button

onClick={() => this.fetchSearchTopStories(searchKey, page + 1)}

>

More

</Button>

}

</div>

</div>

);

}

}

Initially the Loading component will show up when you start your application, because you make a
request on componentDidMount(). There is no Table component, because the list is empty. When the
response returns from the Hacker News API, the result is shown, the loading state is set to false and
the Loading component disappears. Instead, the “More” button to fetch more data appears. Once
you fetch more data, the button will disappear again and the Loading component will show up.

Advanced React Components 152

Exercises:

• use a library such as Font Awesome¹³⁷ to show a loading icon instead of the “Loading …” text

¹³⁷https://fontawesome.io/

https://fontawesome.io/
https://fontawesome.io/

Advanced React Components 153

Higher-Order Components

Higher-order components (HOC) are an advanced concept in React. HOCs are an equivalent to
higher-order functions. They take any input - most of the time a component, but also optional
arguments - and return a component as output. The returned component is an enhanced version
of the input component and can be used in your JSX.

HOCs are used for different use cases. They can prepare properties, manage state or alter the
representation of a component. One use case could be to use a HOC as a helper for a conditional
rendering. Imagine you have a List component that renders a list of items or nothing, because the
list is empty or null. The HOC could shield away that the list would render nothing when there is
no list. On the other hand, the plain List component doesn’t need to bother anymore about an non
existent list. It only cares about rendering the list.

Let’s do a simple HOC which takes a component as input and returns a component. You can place
it in your src/App.js file.

src/App.js

function withFoo(Component) {

return function(props) {

return <Component { ...props } />;

}

}

One neat convention is to prefix the naming of a HOC with with. Since you are using JavaScript
ES6, you can express the HOC more concisely with an ES6 arrow function.

src/App.js

const withFoo = (Component) => (props) =>

<Component { ...props } />

In the example, the input component would stay the same as the output component. Nothing
happens. It renders the same component instance and passes all of the props to the output component.
But that’s useless. Let’s enhance the output component. The output component should show the
Loading component, when the loading state is true, otherwise it should show the input component.
A conditional rendering is a great use case for a HOC.

Advanced React Components 154

src/App.js

const withLoading = (Component) => (props) =>

props.isLoading

? <Loading />

: <Component { ...props } />

Based on the loading property you can apply a conditional rendering. The function will return the
Loading component or the input component.

In general it can be very efficient to spread an object, like the props object in the previous example,
as input for a component. See the difference in the following code snippet.

Code Playground

// before you would have to destructure the props before passing them

const { foo, bar } = props;

<SomeComponent foo={foo} bar={bar} />

// but you can use the object spread operator to pass all object properties

<SomeComponent { ...props } />

There is one little thing that you should avoid. You pass all the props including the isLoading

property, by spreading the object, into the input component. However, the input component may
not care about the isLoading property. You can use the ES6 rest destructuring to avoid it.

src/App.js

const withLoading = (Component) => ({ isLoading, ...rest }) =>

isLoading

? <Loading />

: <Component { ...rest } />

It takes one property out of the object, but keeps the remaining object. It works with multiple
properties as well. You might have already read about it in the destructuring assignment¹³⁸.

Now you can use the HOC in your JSX. A use case in the application could be to show either
the “More” button or the Loading component. The Loading component is already encapsulated
in the HOC, but an input component is missing. In the use case of showing a Button component
or a Loading component, the Button is the input component of the HOC. The enhanced output
component is a ButtonWithLoading component.

¹³⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Advanced React Components 155

src/App.js

const Button = ({

onClick,

className = '',

children,

}) =>

<button

onClick={onClick}

className={className}

type="button"

>

{children}

</button>

const Loading = () =>

<div>Loading ...</div>

const withLoading = (Component) => ({ isLoading, ...rest }) =>

isLoading

? <Loading />

: <Component { ...rest } />

const ButtonWithLoading = withLoading(Button);

Everything is defined now. As a last step, you have to use the ButtonWithLoading component, which
receives the loading state as an additional property. While the HOC consumes the loading property,
all other props get passed to the Button component.

src/App.js

class App extends Component {

...

render() {

...

return (

<div className="page">

...

<div className="interactions">

<ButtonWithLoading

isLoading={isLoading}

onClick={() => this.fetchSearchTopStories(searchKey, page + 1)}

Advanced React Components 156

>

More

</ButtonWithLoading>

</div>

</div>

);

}

}

When you run your tests again, you will notice that your snapshot test for the App component fails.
The diff might look like the following on the command line:

Command Line
- <button

- className=""

- onClick={[Function]}

- type="button"

- >

- More

- </button>

+ <div>

+ Loading ...

+ </div>

You can either fix the component now, when you think there is something wrong about it, or can
accept the new snapshot of it. Because you introduced the Loading component in this chapter, you
can accept the altered snapshot test on the command line in the interactive test.

Higher-order components are an advanced technique in React. They have multiple purposes
like improved reusability of components, greater abstraction, composability of components and
manipulations of props, state and view. Don’t worry if you don’t understand them immediately.
It takes time to get used to them.

I encourage you to read the gentle introduction to higher-order components¹³⁹. It gives you another
approach to learn them, shows you an elegant way to use them in a functional programming way
and solves specifically the problem of conditional rendering with higher-order components.

Exercises:

• read a gentle introduction to higher-order components¹⁴⁰
• experiment with the HOC you have created
• think about a use case where another HOC would make sense

– implement the HOC, if there is a use case

¹³⁹https://www.robinwieruch.de/gentle-introduction-higher-order-components/
¹⁴⁰https://www.robinwieruch.de/gentle-introduction-higher-order-components/

https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/
https://www.robinwieruch.de/gentle-introduction-higher-order-components/

Advanced React Components 157

Advanced Sorting

You have already implemented a client- and server-side search interaction. Since you have a Table
component, it would make sense to enhance the Table with advanced interactions. What about
introducing a sort functionality for each column by using the column headers of the Table?

It would be possible to write your own sort function, but personally I prefer to use a utility library
for such cases. Lodash¹⁴¹ is one of these utility libraries, but you can use whatever library suits you.
Let’s install Lodash and use it for the sort functionality.

Command Line

npm install lodash

Now you can import the sort functionality of Lodash in your src/App.js file.

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import { sortBy } from 'lodash';

import './App.css';

You have several columns in your Table. There are title, author, comments and points columns. You
can define sort functions whereas each function takes a list and returns a list of items sorted by a
specific property. Additionally, you will need one default sort function which doesn’t sort but only
returns the unsorted list. That will be your initial state.

src/App.js

...

const SORTS = {

NONE: list => list,

TITLE: list => sortBy(list, 'title'),

AUTHOR: list => sortBy(list, 'author'),

COMMENTS: list => sortBy(list, 'num_comments').reverse(),

POINTS: list => sortBy(list, 'points').reverse(),

};

class App extends Component {

...

}

...

¹⁴¹https://lodash.com/

https://lodash.com/
https://lodash.com/

Advanced React Components 158

You can see that two of the sort functions return a reversed list. That’s because you want to see the
items with the highest comments and points rather than to see the items with the lowest counts
when you sort the list for the first time.

The SORTS object allows you to reference any sort function now.

Again your App component is responsible for storing the state of the sort. The initial state will be
the initial default sort function, which doesn’t sort at all and returns the input list as output.

src/App.js

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

sortKey: 'NONE',

};

Once you choose a different sortKey, let’s say the AUTHOR key, you will sort the list with the
appropriate sort function from the SORTS object.

Now you can define a new class method in your App component that simply sets a sortKey to your
local component state. Afterward, the sortKey can be used to retrieve the sorting function to apply
it on your list.

src/App.js

class App extends Component {

_isMounted = false;

constructor(props) {

...

this.needsToSearchTopStories = this.needsToSearchTopStories.bind(this);

this.setSearchTopStories = this.setSearchTopStories.bind(this);

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.onDismiss = this.onDismiss.bind(this);

this.onSort = this.onSort.bind(this);

}

...

Advanced React Components 159

onSort(sortKey) {

this.setState({ sortKey });

}

...

}

The next step is to pass the method and sortKey to your Table component.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading,

sortKey

} = this.state;

...

return (

<div className="page">

...

<Table

list={list}

sortKey={sortKey}

onSort={this.onSort}

onDismiss={this.onDismiss}

/>

...

</div>

);

}

}

Advanced React Components 160

The Table component is responsible for sorting the list. It takes one of the SORT functions by sortKey

and passes the list as input. Afterward it keeps mapping over the sorted list.

src/App.js

const Table = ({

list,

sortKey,

onSort,

onDismiss

}) =>

<div className="table">

{SORTS[sortKey](list).map(item =>

<div key={item.objectID} className="table-row">

...

</div>

)}

</div>

In theory the list would get sorted by one of the functions. But the default sort is set to NONE, so
nothing is sorted yet. So far, no one executes the onSort() method to change the sortKey. Let’s
extend the Table with a row of column headers that use Sort components in columns to sort each
column.

src/App.js

const Table = ({

list,

sortKey,

onSort,

onDismiss

}) =>

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={onSort}

>

Title

</Sort>

<Sort

sortKey={'AUTHOR'}

Advanced React Components 161

onSort={onSort}

>

Author

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={onSort}

>

Comments

</Sort>

<Sort

sortKey={'POINTS'}

onSort={onSort}

>

Points

</Sort>

Archive

</div>

{SORTS[sortKey](list).map(item =>

...

)}

</div>

Each Sort component gets a specific sortKey and the general onSort() function. Internally it calls
the method with the sortKey to set the specific key.

src/App.js

const Sort = ({ sortKey, onSort, children }) =>

<Button onClick={() => onSort(sortKey)}>

{children}

</Button>

As you can see, the Sort component reuses your common Button component. On a button click each
individual passed sortKey will get set by the onSort() method. Now you should be able to sort the
list when you click on the column headers.

Advanced React Components 162

There is one minor improvement for an improved look. So far, the button in a column header looks
a bit silly. Let’s give the button in the Sort component a proper className.

src/App.js

const Sort = ({ sortKey, onSort, children }) =>

<Button

onClick={() => onSort(sortKey)}

className="button-inline"

>

{children}

</Button>

It should look nice now. The next goal would be to implement a reverse sort as well. The list should
get reverse sorted once you click a Sort component twice. First, you need to define the reverse state
with a boolean. The sort can be either reversed or non reversed.

src/App.js

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

sortKey: 'NONE',

isSortReverse: false,

};

Now in your sort method, you can evaluate if the list is reverse sorted. It is reverse if the sortKey in
the state is the same as the incoming sortKey and the reverse state is not already set to true.

src/App.js

onSort(sortKey) {

const isSortReverse = this.state.sortKey === sortKey && !this.state.isSortReverse;

this.setState({ sortKey, isSortReverse });

}

Again you can pass the reverse prop to your Table component.

Advanced React Components 163

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading,

sortKey,

isSortReverse

} = this.state;

...

return (

<div className="page">

...

<Table

list={list}

sortKey={sortKey}

isSortReverse={isSortReverse}

onSort={this.onSort}

onDismiss={this.onDismiss}

/>

...

</div>

);

}

}

The Table has to have an arrow function block body to compute the data now.

Advanced React Components 164

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

...

</div>

{reverseSortedList.map(item =>

...

)}

</div>

);

}

The reverse sort should work now.

Last but not least, you have to deal with one open question for the sake of an improved user
experience. Can a user distinguish which column is actively sorted? So far, it is not possible. Let’s
give the user a visual feedback.

Each Sort component gets its specific sortKey already. It could be used to identify the activated
sort. You can pass the sortKey from the internal component state as active sort key to your Sort
component.

Advanced React Components 165

src/App.js
const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={onSort}

activeSortKey={sortKey}

>

Title

</Sort>

<Sort

sortKey={'AUTHOR'}

onSort={onSort}

activeSortKey={sortKey}

>

Author

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={onSort}

activeSortKey={sortKey}

>

Comments

</Sort>

Advanced React Components 166

<Sort

sortKey={'POINTS'}

onSort={onSort}

activeSortKey={sortKey}

>

Points

</Sort>

Archive

</div>

{reverseSortedList.map(item =>

...

)}

</div>

);

}

Now in your Sort component, you know based on the sortKey and activeSortKey whether the sort
is active. Give your Sort component an extra className attribute, in case it is sorted, to give the user
a visual feedback.

src/App.js

const Sort = ({

sortKey,

activeSortKey,

onSort,

children

}) => {

const sortClass = ['button-inline'];

if (sortKey === activeSortKey) {

sortClass.push('button-active');

}

return (

<Button

onClick={() => onSort(sortKey)}

className={sortClass.join(' ')}

>

{children}

Advanced React Components 167

</Button>

);

}

The way to define the sortClass is a bit clumsy, isn’t it? There is a neat little library to get rid of
this. First you have to install it.

Command Line

npm install classnames

And second you have to import it on top of your src/App.js file.

src/App.js

import React, { Component } from 'react';

import axios from 'axios';

import { sortBy } from 'lodash';

import classNames from 'classnames';

import './App.css';

Now you can use it to define your component className with conditional classes.

src/App.js

const Sort = ({

sortKey,

activeSortKey,

onSort,

children

}) => {

const sortClass = classNames(

'button-inline',

{ 'button-active': sortKey === activeSortKey }

);

return (

<Button

onClick={() => onSort(sortKey)}

className={sortClass}

>

{children}

</Button>

);

}

Advanced React Components 168

Again, when you run your tests, you should see failing snapshot tests but also failing unit tests for
the Table component. Since you changed again your component representations, you can accept the
snapshot tests. But you have to fix the unit test. In your src/App.test.js file, you need to provide a
sortKey and the isSortReverse boolean for the Table component.

src/App.test.js

...

describe('Table', () => {

const props = {

list: [

{ title: '1', author: '1', num_comments: 1, points: 2, objectID: 'y' },

{ title: '2', author: '2', num_comments: 1, points: 2, objectID: 'z' },

],

sortKey: 'TITLE',

isSortReverse: false,

};

...

});

Once again you might need to accept the failing snapshot tests for your Table component, because
you provided extended props for the Table component.

Finally your advanced sort interaction is complete now.

Exercises:

• use a library like Font Awesome¹⁴² to indicate the (reverse) sort
– it could be an arrow up or arrow down icon next to each Sort header

• read more about the classnames library¹⁴³

¹⁴²https://fontawesome.io/
¹⁴³https://github.com/JedWatson/classnames

https://fontawesome.io/
https://github.com/JedWatson/classnames
https://fontawesome.io/
https://github.com/JedWatson/classnames

Advanced React Components 169

You have learned advanced component techniques in React! Let’s recap the last chapters:

• React
– the ref attribute to reference DOM elements
– higher-order components are a common way to build advanced components
– implementation of advanced interactions in React
– conditional classNames with a neat helper library

• ES6
– rest destructuring to split up objects and arrays

You can find the source code in the official repository¹⁴⁴.

¹⁴⁴https://github.com/the-road-to-learn-react/hackernews-client/tree/5.5

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.5
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.5

State Management in React and
beyond
You have already learned the basics of state management in React in the previous chapters. This
chapter digs a bit deeper into the topic. You will learn best practices, how to apply them and why
you could consider using a third-party state management library.

State Management in React and beyond 171

Lifting State

Only the App component is a stateful ES6 component in your application. It handles a lot of
application state and logic in its class methods. Maybe you have noticed that you pass a lot of
properties to your Table component. Most of these props are only used in the Table component. In
conclusion one could argue that it makes no sense that the App component knows about them.

The whole sort functionality is only used in the Table component. You could move it into the
Table component, because the App component doesn’t need to know about it at all. The process
of refactoring substate from one component to another is known as lifting state. In your case, you
want to move state that isn’t used in the App component into the Table component. The state moves
down from parent to child component.

In order to deal with state and class methods in the Table component, it has to become an ES6
class component. The refactoring from functional stateless component to ES6 class component is
straightforward.

Your Table component as a functional stateless component:

src/App.js

const Table = ({

list,

sortKey,

isSortReverse,

onSort,

onDismiss

}) => {

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

...

);

}

Your Table component as an ES6 class component:

State Management in React and beyond 172

src/App.js

class Table extends Component {

render() {

const {

list,

sortKey,

isSortReverse,

onSort,

onDismiss

} = this.props;

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return (

...

);

}

}

Since you want to deal with state and methods in your component, you have to add a constructor
and initial state.

src/App.js

class Table extends Component {

constructor(props) {

super(props);

this.state = {};

}

render() {

...

}

}

Now you can move state and class methods regarding the sort functionality from your App
component down to your Table component.

State Management in React and beyond 173

src/App.js

class Table extends Component {

constructor(props) {

super(props);

this.state = {

sortKey: 'NONE',

isSortReverse: false,

};

this.onSort = this.onSort.bind(this);

}

onSort(sortKey) {

const isSortReverse = this.state.sortKey === sortKey && !this.state.isSortRevers\

e;

this.setState({ sortKey, isSortReverse });

}

render() {

...

}

}

Don’t forget to remove the moved state and onSort() class method from your App component.

src/App.js

class App extends Component {

_isMounted = false;

constructor(props) {

super(props);

this.state = {

results: null,

searchKey: '',

searchTerm: DEFAULT_QUERY,

error: null,

isLoading: false,

};

this.setSearchTopStories = this.setSearchTopStories.bind(this);

State Management in React and beyond 174

this.fetchSearchTopStories = this.fetchSearchTopStories.bind(this);

this.onDismiss = this.onDismiss.bind(this);

this.onSearchSubmit = this.onSearchSubmit.bind(this);

this.onSearchChange = this.onSearchChange.bind(this);

this.needsToSearchTopStories = this.needsToSearchTopStories.bind(this);

}

...

}

Additionally, you can make the Table component API more lightweight. Remove the props that are
passed to it from the App component, because they are handled internally in the Table component
now.

src/App.js

class App extends Component {

...

render() {

const {

searchTerm,

results,

searchKey,

error,

isLoading

} = this.state;

...

return (

<div className="page">

...

{ error

? <div className="interactions">

<p>Something went wrong.</p>

</div>

: <Table

list={list}

onDismiss={this.onDismiss}

/>

}

State Management in React and beyond 175

...

</div>

);

}

}

Now in your Table component you can use the internal onSort() method and the internal Table
state.

src/App.js

class Table extends Component {

...

render() {

const {

list,

onDismiss

} = this.props;

const {

sortKey,

isSortReverse,

} = this.state;

const sortedList = SORTS[sortKey](list);

const reverseSortedList = isSortReverse

? sortedList.reverse()

: sortedList;

return(

<div className="table">

<div className="table-header">

<Sort

sortKey={'TITLE'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Title

</Sort>

State Management in React and beyond 176

<Sort

sortKey={'AUTHOR'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Author

</Sort>

<Sort

sortKey={'COMMENTS'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Comments

</Sort>

<Sort

sortKey={'POINTS'}

onSort={this.onSort}

activeSortKey={sortKey}

>

Points

</Sort>

Archive

</div>

{ reverseSortedList.map((item) =>

...

)}

</div>

);

}

}

Your application should still work. But you made a crucial refactoring. You moved functionality and
state closer into another component. Other components got more lightweight again. Additionally
the component API of the Table got more lightweight because it deals internally with the sort
functionality.

State Management in React and beyond 177

The process of lifting state can go the other way as well: from child to parent component. It is called
as lifting state up. Imagine you were dealing with internal state in a child component. Now you
want to fulfill a requirement to show the state in your parent component as well. You would have to
lift up the state to your parent component. But it goes even further. Imagine you want to show the
state in a sibling component of your child component. Again you would have to lift the state up to
your parent component. The parent component deals with the internal state, but exposes it to both
child components.

Exercises:

• read more about lifting state in React¹⁴⁵
• read more about lifting state in learn React before using Redux¹⁴⁶

¹⁴⁵https://reactjs.org/docs/lifting-state-up.html
¹⁴⁶https://www.robinwieruch.de/learn-react-before-using-redux/

https://reactjs.org/docs/lifting-state-up.html
https://www.robinwieruch.de/learn-react-before-using-redux/
https://reactjs.org/docs/lifting-state-up.html
https://www.robinwieruch.de/learn-react-before-using-redux/

State Management in React and beyond 178

Revisited: setState()

So far, you have used React setState() to manage your internal component state. You can pass an
object to the function where you can update partially the internal state.

Code Playground

this.setState({ foo: bar });

But setState() doesn’t take only an object. In its second version, you can pass a function to update
the state.

Code Playground

this.setState((prevState, props) => {

...

});

Why should you want to do that? There is one crucial use case where it makes sense to use a function
over an object. It is when you update the state depending on the previous state or props. If you don’t
use a function, the internal state management can cause bugs.

But why does it cause bugs to use an object over a function when the update depends on the previous
state or props? The React setState() method is asynchronous. React batches setState() calls and
executes them eventually. It can happen that the previous state or props changed in between when
you would rely on it in your setState() call.

Code Playground

const { fooCount } = this.state;

const { barCount } = this.props;

this.setState({ count: fooCount + barCount });

Imagine that fooCount and barCount, thus the state or the props, change somewhere else asyn-
chronously when you call setState(). In a growing application, you have more than one setState()
call across your application. Since setState() executes asynchronously, you could rely in the
example on stale values.

With the function approach, the function in setState() is a callback that operates on the state and
props at the time of executing the callback function. Even though setState() is asynchronous, with
a function it takes the state and props at the time when it is executed.

State Management in React and beyond 179

Code Playground

this.setState((prevState, props) => {

const { fooCount } = prevState;

const { barCount } = props;

return { count: fooCount + barCount };

});

Now, lets get back to your code to fix this behavior. Together we will fix it for one place where
setState() is used and relies on the state or props. Afterward, you are able to fix it at other places
too.

The setSearchTopStories() method relies on the previous state and thus is a perfect example to
use a function over an object in setState(). Right now, it looks like the following code snippet.

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

const { searchKey, results } = this.state;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

this.setState({

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

});

}

You extract values from the state, but update the state depending on the previous state asyn-
chronously. Now you can use the functional approach to prevent bugs because of a stale state.

State Management in React and beyond 180

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

this.setState(prevState => {

...

});

}

You can move the whole block that you have already implemented into the function. You only have
to replace that you operate on the prevState rather than this.state.

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

this.setState(prevState => {

const { searchKey, results } = prevState;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

return {

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

};

});

}

That will fix the issue with a stale state. There is one more improvement. Since it is a function, you
can extract the function for an improved readability. That’s one more advantage to use a function
over an object. The function can live outside of the component. But you have to use a higher-order
function to pass the result to it. After all, you want to update the state based on the fetched result
from the API.

State Management in React and beyond 181

src/App.js

setSearchTopStories(result) {

const { hits, page } = result;

this.setState(updateSearchTopStoriesState(hits, page));

}

The updateSearchTopStoriesState() function has to return a function. It is a higher-order function.
You can define this higher-order function outside of your App component. Note how the function
signature changes slightly now.

src/App.js

const updateSearchTopStoriesState = (hits, page) => (prevState) => {

const { searchKey, results } = prevState;

const oldHits = results && results[searchKey]

? results[searchKey].hits

: [];

const updatedHits = [

...oldHits,

...hits

];

return {

results: {

...results,

[searchKey]: { hits: updatedHits, page }

},

isLoading: false

};

};

class App extends Component {

...

}

That’s it. The function over an object approach in setState() fixes potential bugs yet increases
readability and maintainability of your code. Furthermore, it becomes testable outside of the App
component. You could export it and write a test for it as exercise.

State Management in React and beyond 182

Exercise:

• read more about React using state correctly¹⁴⁷
• export updateSearchTopStoriesState from the file
• write a test for it which passes the a payload (hits, page) and a made up previous state and

finally expect a new state
• refactor your setState() methods to use a function

– but only when it makes sense, because it relies on props or state
• run your tests again and verify that everything is up to date

¹⁴⁷https://reactjs.org/docs/state-and-lifecycle.html#using-state-correctly

https://reactjs.org/docs/state-and-lifecycle.html#using-state-correctly
https://reactjs.org/docs/state-and-lifecycle.html#using-state-correctly

State Management in React and beyond 183

Taming the State

The previous chapters have shown you that state management can be a crucial topic in larger
applications. In general, not only React but a lot of SPA frameworks struggle with it. Applications
got more complex in the recent years. One big challenge in web applications nowadays is to tame
and control the state.

Compared to other solutions, React already made a big step forward. The unidirectional data flow
and a simple API to manage state in a component are indispensable. These concepts make it easier to
reason about your state and your state changes. It makes it easier to reason about it on a component
level and to a certain degree on an application level.

In a growing application, it gets harder to reason about state changes. You can introduce bugs
by operating on stale state when using an object over a function in setState(). You have to
lift state around to share necessary or hide unnecessary state across components. It can happen
that a component needs to lift up state, because its sibling component depends on it. Perhaps the
component is far away in the component tree and thus you have to share the state across the whole
component tree. In conclusion components get involved to a greater extent in state management.
But after all, the main responsibility of components should be representing the UI, shouldn’t it?

Because of all these reasons, there exist standalone solutions to take care of the state management.
These solutions are not only used in React. However, that’s what makes the React ecosystem such
a powerful place. You can use different solutions to solve your problems. To address the problem
of scaling state management, you might have heard of the libraries Redux¹⁴⁸ or MobX¹⁴⁹. You can
use either of these solutions in a React application. They come with extensions, react-redux¹⁵⁰ and
mobx-react¹⁵¹, to integrate them into the React view layer.

Redux and MobX are outside of the scope of this book. When you have finished the book, you will get
guidance on how you can continue to learn React and its ecosystem. One learning path could be to
learn Redux. Before you dive into the topic of external state management, I can recommend to read
this article¹⁵². It aims to give you a better understanding of how to learn external state management.

Exercises:

• read more about external state management and how to learn it¹⁵³
• check out my second ebook about state management in React¹⁵⁴

¹⁴⁸https://redux.js.org/introduction
¹⁴⁹https://mobx.js.org/
¹⁵⁰https://github.com/reactjs/react-redux
¹⁵¹https://github.com/mobxjs/mobx-react
¹⁵²https://www.robinwieruch.de/redux-mobx-confusion/
¹⁵³https://www.robinwieruch.de/redux-mobx-confusion/
¹⁵⁴https://roadtoreact.com/

https://redux.js.org/introduction
https://mobx.js.org/
https://github.com/reactjs/react-redux
https://github.com/mobxjs/mobx-react
https://www.robinwieruch.de/redux-mobx-confusion/
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/
https://redux.js.org/introduction
https://mobx.js.org/
https://github.com/reactjs/react-redux
https://github.com/mobxjs/mobx-react
https://www.robinwieruch.de/redux-mobx-confusion/
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/

State Management in React and beyond 184

You have learned advanced state management in React! Let’s recap the last chapters:

• React
– lift state management up and down to suitable components
– setState() can use a function to prevent stale state bugs
– existing external solutions that help you to tame the state

You can find the source code in the official repository¹⁵⁵.

¹⁵⁵https://github.com/the-road-to-learn-react/hackernews-client/tree/5.6

https://github.com/the-road-to-learn-react/hackernews-client/tree/5.6
https://github.com/the-road-to-learn-react/hackernews-client/tree/5.6

Final Steps to Production
The last chapters will show you how to deploy your application to production. You will use the
free hosting service Heroku. On the way to deploy your application, you will learn more about
create-react-app.

Final Steps to Production 186

Eject

The following step and knowledge is not necessary to deploy your application to production. Still,
I want to explain it to you. create-react-app comes with one feature to keep it extendable but also
to prevent a vendor lock-in. A vendor lock-in usually happens when you buy into a technology but
there is no escape hatch of using it in the future. Fortunately in create-react-app you have such an
escape hatch with “eject”.

In your package.json you will find the scripts to start, test and build your application. The last script
is eject. You could try it, but there is no way back. It is a one-way operation. Once you eject,
you can’t go back! If you just started to learn React, it makes no sense to leave the convenient
environment of create-react-app.

If you would run npm run eject, the command would copy all the configuration and dependencies
to your package.json and a new config/ folder. You would convert the whole project into a custom
setup with tooling that includes Babel and Webpack. After all, you would have full control over all
these tools.

The official documentation says that create-react-app is suitable for small to mid size projects. You
shouldn’t feel obligated to use the “eject” command.

Exercises:

• read more about eject¹⁵⁶

¹⁵⁶https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-eject

https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-eject
https://github.com/facebook/create-react-app/blob/master/packages/react-scripts/template/README.md#npm-run-eject

Final Steps to Production 187

Deploy your App

In the end, no application should stay on localhost. You want to go live. Heroku is a platform as
a service where you can host your application. They offer a seamless integration with React. To
be more specific: It’s possible to deploy a create-react-app in minutes. It is a zero-configuration
deployment which follows the philosophy of create-react-app.

You need to fulfill two requirements before you can deploy your application to Heroku:

• install the Heroku CLI¹⁵⁷
• create a free Heroku account¹⁵⁸

If you have installed Homebrew, you can install the Heroku CLI from command line:

Command Line

brew update

brew install heroku-toolbelt

Now you can use git and Heroku CLI to deploy your application.

Command Line

git init

heroku create -b https://github.com/mars/create-react-app-buildpack.git

git add .

git commit -m "react-create-app on Heroku"

git push heroku master

heroku open

That’s it. I hope your application is up and running now. If you run into problems you can check
the following resources:

• Git and GitHub Essentials¹⁵⁹
• Deploying React with Zero Configuration¹⁶⁰
• Heroku Buildpack for create-react-app¹⁶¹

¹⁵⁷https://devcenter.heroku.com/articles/heroku-cli
¹⁵⁸https://www.heroku.com/
¹⁵⁹https://www.robinwieruch.de/git-essential-commands/
¹⁶⁰https://blog.heroku.com/deploying-react-with-zero-configuration
¹⁶¹https://github.com/mars/create-react-app-buildpack

https://devcenter.heroku.com/articles/heroku-cli
https://www.heroku.com/
https://www.robinwieruch.de/git-essential-commands/
https://blog.heroku.com/deploying-react-with-zero-configuration
https://github.com/mars/create-react-app-buildpack
https://devcenter.heroku.com/articles/heroku-cli
https://www.heroku.com/
https://www.robinwieruch.de/git-essential-commands/
https://blog.heroku.com/deploying-react-with-zero-configuration
https://github.com/mars/create-react-app-buildpack

Outline
That was the last chapter of the book. I hope you enjoyed reading it and that it helped you to get
traction in React. If you liked the book, share it as a way to learn React with your friends. It should
be used as giveaway. In addition, it would mean a lot to me if you could take 5 minutes to write a
review about it on Amazon¹⁶² or Goodreads¹⁶³.

So, where can you go from here after reading this book? You can either extend the application
on your own or give your own React project a shot. Before you dive into another book, course or
tutorial, you should create your own hands-on React project. Do it for one week, take it to production
by deploying it somewhere, and reach out to me me¹⁶⁴ or others to showcase it. I am curious what
you will build after you have read the book.

If you are looking for further extensions for your application, I can recommend several learning
paths after you have used only plain React in this book:

• State Management: You have used React this.setState() and this.state to manage and
access local component state. That’s a perfect start. However, in a larger application you will
experience the limits of React’s local component state¹⁶⁵. Therefore you can use a third-party
state management library such as Redux or MobX¹⁶⁶. On the course platform Road to React¹⁶⁷,
you will find the course “Taming the State in React” that teaches advanced local state in React,
Redux and MobX. The course comes with an ebook as well, but I recommend everyone to dive
into the source code and screencasts too. If you liked this book, you should definitely checkout
Taming the State in React.

• Connecting to a Database and/or Authentication: In a growing React application, you may
want to persist data eventually. The data should be stored in a database so that it can survive
after a browser session and be shared across different users using your application. The simplest
way to introduce a database is using Firebase. In this comprehensive tutorial¹⁶⁸, you will find
a step by step guide on how to use Firebase authentication (sign up, sign in, sign out, …) in
React. Beyond that, you will use Firebase’s realtime database to store user entities. After that,
it’s up to you to store more data in the database which is needed by your application.

• Tooling with Webpack and Babel: In the book you have used create-react-app to set up your
application. At some point, when you have learned React, you might want to learn the tooling
around it. It enables you to setup your own project without create-react-app. I can recommend
to follow a minimal setup with Webpack and Babel¹⁶⁹. Afterward, you can apply more tooling

¹⁶²https://www.amazon.com/dp/B077HJFCQX
¹⁶³https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
¹⁶⁴https://twitter.com/rwieruch
¹⁶⁵https://www.robinwieruch.de/learn-react-before-using-redux/
¹⁶⁶https://www.robinwieruch.de/redux-mobx-confusion/
¹⁶⁷https://roadtoreact.com/
¹⁶⁸https://www.robinwieruch.de/complete-firebase-authentication-react-tutorial/
¹⁶⁹https://www.robinwieruch.de/minimal-react-webpack-babel-setup/

https://www.amazon.com/dp/B077HJFCQX
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://twitter.com/rwieruch
https://www.robinwieruch.de/learn-react-before-using-redux/
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/
https://www.robinwieruch.de/complete-firebase-authentication-react-tutorial/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.amazon.com/dp/B077HJFCQX
https://www.goodreads.com/book/show/37503118-the-road-to-learn-react
https://twitter.com/rwieruch
https://www.robinwieruch.de/learn-react-before-using-redux/
https://www.robinwieruch.de/redux-mobx-confusion/
https://roadtoreact.com/
https://www.robinwieruch.de/complete-firebase-authentication-react-tutorial/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/

Outline 189

on your own. For instance, you could use ESLint¹⁷⁰ to follow a unified code style in your
application.

• React Component Syntax: The possibilities and best practices to implement React components
evolve over time. You will find many ways to write your React components, especially React
class components, in other learning resources. You can checkout this GitHub repository¹⁷¹ to
find out about an alternative way to write React class components. By using the class field
declarations, you can write them even more concise in the future.

• Other Projects: After learning plain React, it is always good to apply the learnings first in
your own projects before learning something new. You could write your own tic-tac-toe game
or a simple calculator in React. There are plenty of tutorials out there that use only React to
build something exciting. Check out mine about building a paginated and infinite scrolling
list¹⁷², showcasing tweets on a Twitter wall¹⁷³ or connecting your React application to Stripe
for charging money¹⁷⁴. Experiment with these mini applications to get comfortable in React.

• UIComponents:You shouldn’t make the mistake to introduce too early a UI component library
in your project. First, you should learn how to implement and use a dropdown, checkbox
or dialog in React with standard HTML elements from scratch. The major part of these
components will manage their own local state. A checkbox has to know whether it is checked
or not checked. Thus you should implement them as controlled components. After you went
through all the foundational implementations, you can introduce a UI component library which
gives you checkboxes and dialogs as React components.

• Code Organization: On your way reading the book, you came across one chapter about
code organization. You could apply these changes now, if you haven’t done it yet. It will
organize your components in structured files and folders (modules). In addition, it helps you to
understand and learn the principles of code splitting, reusability, maintainability and module
API design. Eventually your application will grow in size and you will need to structure it in
modules. So it’s better you get started now.

• Testing: The book only scratched the surface of testing. If you are not familiar with the general
topic, you could dive deeper into the concepts of unit testing and integration testing, especially
in context of React applications. On an implementation level, I would recommend to stick to
Enzyme and Jest in order to refine your approach of testing with unit tests and snapshot tests
in React.

• Routing: You can implement routing for your application with react-router¹⁷⁵. So far, you
only have one page in your application. React Router helps you to have multiple pages across
multiple URLs. When you introduce routing to your application, you don’t make any requests
to your web server to request the next page. The router will do everything for you on the
client-side. So get your hands dirty and introduce routing in your application.

• Type Checking: In one chapter, you have used React PropTypes to define component
interfaces. It is a general good practice to prevent bugs. But the PropTypes are only checked

¹⁷⁰https://www.robinwieruch.de/react-eslint-webpack-babel/
¹⁷¹https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
¹⁷²https://www.robinwieruch.de/react-paginated-list/
¹⁷³https://www.robinwieruch.de/react-svg-patterns/
¹⁷⁴https://www.robinwieruch.de/react-express-stripe-payment/
¹⁷⁵https://github.com/ReactTraining/react-router

https://www.robinwieruch.de/react-eslint-webpack-babel/
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://www.robinwieruch.de/react-paginated-list/
https://www.robinwieruch.de/react-paginated-list/
https://www.robinwieruch.de/react-svg-patterns/
https://www.robinwieruch.de/react-express-stripe-payment/
https://www.robinwieruch.de/react-express-stripe-payment/
https://github.com/ReactTraining/react-router
https://www.robinwieruch.de/react-eslint-webpack-babel/
https://github.com/the-road-to-learn-react/react-alternative-class-component-syntax
https://www.robinwieruch.de/react-paginated-list/
https://www.robinwieruch.de/react-svg-patterns/
https://www.robinwieruch.de/react-express-stripe-payment/
https://github.com/ReactTraining/react-router

Outline 190

on runtime. You can go one step further to introduce static type checking on compile time.
TypeScript¹⁷⁶ is one popular approach. But in the React ecosystem, people often use Flow¹⁷⁷. I
can recommend to give Flow a shot, if you are interested to make your application more robust.

• React Native: React Native¹⁷⁸ brings your application on mobile devices. You can apply your
learnings from React to ship iOS and Android applications. The learning curve, once you have
learned React, shouldn’t be steep in React Native. Both share the same principles. You will only
encounter different layout components on mobile than you are used to in web applications.

In general, I invite you to visit my website¹⁷⁹ to find more interesting topics about web development
and software engineering. You can subscribe to my Newsletter¹⁸⁰ to get updates about articles, books,
and courses. Furthermore, the course platform Road to React¹⁸¹ offers more advanced courses to learn
about the React ecosystem. You should check it out!

Last but not least, I hope to find more Patrons¹⁸² who are able to support my content. There are
many students out there who cannot afford to pay for educational content. That’s why I put lots
of my content out there for free. By supporting me in my doings as being my Patron, I can sustain
these efforts to educate others for free.

Once again, if you liked the book, I want you to take a moment to think about a person who would
be a good match to learn React. Reach out to that person and share the book. It would mean a lot to
me. The book is intended to be given to others. It will improve over time when more people read it
and share their feedback with me. I hope to see your feedback, review or rating as well!

Thank you a lot for reading the Road to learn React.

Robin

¹⁷⁶https://www.typescriptlang.org/
¹⁷⁷https://flowtype.org/
¹⁷⁸https://facebook.github.io/react-native/
¹⁷⁹https://www.robinwieruch.de
¹⁸⁰https://www.getrevue.co/profile/rwieruch
¹⁸¹https://roadtoreact.com
¹⁸²https://www.patreon.com/rwieruch

https://www.typescriptlang.org/
https://flowtype.org/
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://roadtoreact.com/
https://www.patreon.com/rwieruch
https://www.typescriptlang.org/
https://flowtype.org/
https://facebook.github.io/react-native/
https://www.robinwieruch.de/
https://www.getrevue.co/profile/rwieruch
https://roadtoreact.com/
https://www.patreon.com/rwieruch

	Table of Contents
	Foreword
	About the Author
	Testimonials
	Education for Children
	FAQ
	Change Log
	How to read it?
	Introduction to React
	Hi, my name is React.
	Requirements
	node and npm
	Installation
	Zero-Configuration Setup
	Introduction to JSX
	ES6 const and let
	ReactDOM
	Hot Module Replacement
	Complex JavaScript in JSX
	ES6 Arrow Functions
	ES6 Classes

	Basics in React
	Internal Component State
	ES6 Object Initializer
	Unidirectional Data Flow
	Bindings
	Event Handler
	Interactions with Forms and Events
	ES6 Destructuring
	Controlled Components
	Split Up Components
	Composable Components
	Reusable Components
	Component Declarations
	Styling Components

	Getting Real with an API
	Lifecycle Methods
	Fetching Data
	ES6 Spread Operators
	Conditional Rendering
	Client- or Server-side Search
	Paginated Fetch
	Client Cache
	Error Handling
	Axios instead of Fetch

	Code Organization and Testing
	ES6 Modules: Import and Export
	Code Organization with ES6 Modules
	Snapshot Tests with Jest
	Unit Tests with Enzyme
	Component Interface with PropTypes
	Debugging with React Developer Tools

	Advanced React Components
	Ref a DOM Element
	Loading …
	Higher-Order Components
	Advanced Sorting

	State Management in React and beyond
	Lifting State
	Revisited: setState()
	Taming the State

	Final Steps to Production
	Eject
	Deploy your App

	Outline

